首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
A rapid and sensitive LC‐electrospray ionization‐MS method was developed for determining vinorelbine in rat plasma. A 100 µL plasma sample was treated using a protein precipitation procedure and was chromatographed within 4 min using an Inertsil ODS‐3 C18 (2.1 × 50 mm, 5 µm) column. The selected ion monitoring ions [M + H]+ were m/z 779 and m/z 811 for vinorelbine and vinblastine (internal standard), respectively. The method validation showed that the calibration curve for vinorelbine was linear over a concentration range of 1–1000 ng/mL with lower limit of quantification at 1 ng/mL. The method has been successfully applied to pharmacokinetics in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a new LC‐ESI‐MS/MS‐based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid–liquid extraction as the sample clean‐up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4]+ → 503.4 and m/z 518.2 [M + NH4]+ → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5–200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Tubuloside B, a novel neuroprotective phenylethanoid, is a major active constituent of Cistanche tubulosa and Cistanche deserticola. A specific and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the quantification of tubuloside B in rat plasma. Sample preparation was conducted through a protein‐precipitation extraction with methanol using tubuloside A as internal standard (IS). Chromatographic separation was achieved using a Capcell Pak C18 column (2.0 × 50 mm, 5 μm) with a mobile phase of methanol–10 mm ammonium acetate buffer (70:30, v/v) in an isocratic elution. Mass spectrometry analysis was performed in negative ionization mode with selected reaction monitoring transitions at m/z 665.1 → 160.9 for tubuloside B, and m/z 827.1 → 160.9 for IS. Calibration curves were linear over the range of 1.64–1640 ng/mL for plasma samples samples (R2 > 0.990). The lower limit of quantification (LLOQ) was 1.64 ng/mL. The intra‐ and inter‐day accuracy was between 92.3 and 113.0% with the RSD <9.23% at all LLOQ and quality control levels. Finally, this method was successfully applied in the pharmacokinetics study of tubuloside B after intravenous administration.  相似文献   

5.
Senkyunolide I is one of the major bioactive components in the herbal medicine Ligusticum chuanxiong. The aim of this study was to develop and validate a fast, simple and sensitive LC‐MS/MS method for the determination of senkyunolide I in dog plasma. The plasma samples were processed with acetonitrile and separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase consisted of 0.1% formic acid aqueous and acetonitrile was delivered at a flow rate of 0.3 mL min−1. The detection was achieved in the positive selected reaction monitoring mode with precursor‐to‐product transitions at m/z 225.1 → 161.1 for senkyunolide I and at m/z 349.1 → 305.1 for an internal standard. The assay was linear over the tested concentration range, from 0.5 ng mL−1 to 1000 ng mL−1, with a correlation coefficient >0.9992. The mean extraction recovery from dog plasma was within the range of 85.78–93.25%, while the matrix effect of the analyte was within the range of 98.23–108.89%. The intra‐ and inter‐day precisions (RSD) were <12.12% and the accuracy (RR) ranged from 98.89% to 104.24%. The validated assay was successfully applied to pharmacokinetic and bioavailability studies of senkyunolide I in dogs. The results demonstrated that (a) senkyunolide I showed short elimination half‐life (<1 h) in dog, (b) its oral bioavailability was >40% and (c) senkyunolide I showed dose‐independent pharmacokinetic profiles in dog plasma over the dose range of 1–50 mg kg−1.  相似文献   

6.
Canagliflozin is a novel, orally selective inhibitor of sodium‐dependent glucose co‐transporter‐2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a validated liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the quantitative analysis of canagliflozin in a lower volume of rat plasma (0.1 mL) was established and applied to a pharmacokinetic study in rats. Following liquid–liquid extraction by tert‐butyl methyl ether, chromatographic separation of canagliflozin was performed on a Quicksorb ODS (2.1 mm i.d. × 150 mm, 5 µm size) using acetonitrile–0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The detection was carried out using an API 3200 triple‐quadrupole mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z = 462.0 [M + NH4]+ → 191.0 for canagliflozin and m/z = 451.2 [M + H]+ → 71.0 for empagliflozin (internal standard) were obtained. The validation of the method was investigated, and it was found to be of sufficient specificity, accuracy and precision. Canagliflozin in rat plasma was stable under the analytical conditions used. This validated method was successfully applied to assess the pharmacokinetics of canagliflozin in rats using 0.1 mL rat plasma. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid and validated method for analysis of levosulpiride in human plasma using liquid chromatography coupled to tandem mass spectrometry was developed. Levosulpiride and tiapride (IS, internal standard) were extracted from alkalized plasma samples with ethylacetate and separation by RP‐HPLC. Detection was performed by positive ion electrospray ionization in multiple‐reaction monitoring mode, monitoring the transitions m/z 342.1 → m/z 112.2 and m/z 329.1 → m/z 213.2, for quantification of levosulpiride and IS, respectively. The standard calibration curves showed good linearity within the range of 2–200 ng/mL (r2 ≥ 0.9990). The lower limit of quantitation was 2 ng/mL. The retention times of levosulpiride (0.63 min) and IS (0.66 min) presented a significant time saving benefit of the proposed method. No significant metabolic compounds were found to interfere with the analysis. This method offered good precision and accuracy and was successfully applied for the pharmacokinetic and bioequivalence study of a 25 mg of levosulpiride tablet in 24 healthy Korean volunteers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Moxidectin (MOX) has recently been approved by the US Food and Drug Administration for the treatment of river blindness in select populations. It is also being evaluated as an alternative for the use of ivermectin, widespread resistance to which is becoming a global health issue. Moreover, MOX is becoming increasingly used as a prophylactic antiparasitic in the cattle industry. In this study, we developed and validated an LC–MS/MS method of MOX in human, monkey and mouse plasma. The separation was achieved on an ACE C18 (50 × 3.0 mm, 3 μm) column with isocratic elution using 0.1% acetic acid and methanol–acetonitrile (1:1, v/v) as mobile phase. MOX was quantitated using MS/MS with an electrospray ionization source operating in negative multiple reaction monitoring mode. The multiple reaction monitoring precursor ion → product ion transitions for MOX and abamectin (IS) were m/z 638.40 → 236.30 and m/z 871.50 → 565.35 respectively. The MS/MS response was linear over the concentration range 0.1–1000 ng/mL in plasma with a correlation coefficient (r2) of 0.997 or better. The within‐ and between‐day precision (relative standard deviation, RSD) and accuracy were within the acceptable limits per US Food and Drug Administration guidelines. The method was successfully applied to an in vitro metabolic stability study of MOX.  相似文献   

9.
The purpose of this study was to develop and validate an LC–MS/MS method for simultaneous determination of idelalisib and GS‐563117 in dog plasma. The analytes were extracted using ethyl acetate and then separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, i. d., 1.7 μm) using 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.3 mL/min in gradient elution mode. The analytes were quantified using selected reaction monitoring with precursor‐to‐product transitions at m/z 416.2 → 176.1, m/z 432.2 → 192.1 and m/z 421.2 → 176.1 for idelalisib, GS‐563117 and [2H5]‐idelalisib (internal standard). The assay showed good linearity (r > 0.9992) over the tested concentration range of 0.1–600 ng/mL for idelalisib and 0.1–300 ng/mL for GS‐563117. The intra‐ and inter‐day RSD values for idelalisib and GS‐563117 were <8.84 and 12.41%, respectively. The intra‐ and inter‐day RE values were within the range of ?7.21–8.52%, and ?6.44–14.23%, respectively. The extraction recovery was found to be >84.59% and no matrix effects were observed. The validated LC–MS/MS method has been successfully applied for the simultaneous determination of idelalisib and GS‐563117 in a pharmacokinetic study in dogs. Our results suggested that idelalisib was rapidly metabolized into its metabolite GS‐563117 in dog and the in vivo exposure of GS‐563117 was 17.59% of that of idelalisib.  相似文献   

10.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

11.
A single LC–MS/MS assay has been developed and validated for the simultaneous determination of metformin and dapagliflozin in human plasma using ion‐pair solid‐phase extraction. Chromatographic separation of the analytes and their internal standards was carried out on a reversed‐phase ACE 5CN (150 × 4.6 mm, 5 μm) column using acetonitrile–15 mm ammonium acetate, pH 4.5 (70:30, v/v) as the mobile phase. To achieve higher sensitivity and selectivity for the analytes, mass spectrometric analysis was performed using a polarity switching approach. Ion transitions studied using multiple reaction monitoring mode were m/z 130.1 [M + H]+/60.1 for metformin and m/z 467.1 [M + CH3COO]?/329.1 for dapagliflozin in the positive and negative modes, respectively. The linear calibration range of the assay was established from 1.00 to 2000 ng/mL for metformin and from 0.10 to 200 ng/mL for dapagliflozin to achieve a better assessment of the pharmacokinetics of the drugs. The limit of detection and limit of quantitation for the analytes were 0.39 and 1.0 ng/mL for metformin and 0.03 and 0.1 ng/mL for dapagliflozin, respectively. There was no interference of plasma matrix obtained from different sources, including hemolyzed and lipemic plasma. The method was successfully applied to study the effect of food on the pharmacokinetics of metformin and dapagliflozin in healthy subjects.  相似文献   

12.
The present investigation describes the development and validation of a sensitive liquid chromatography–mass spectrometry/mass spectrometry (LC‐MS/MS) method for the estimation of dorsomorphin in rat plasma. A sensitive LC‐MS/MS method was developed using multiple reaction monitoring mode, with the transition of m/z (Q1/Q3) 400.2/289.3 for dorsomorphin and m/z (Q1/Q3) 306.2/236.3 for zaleplon. Chromatographic separation was achieved on a reverse phase Agilent XDB C18 column (100 × 4.6 mm, 5 µm). The mobile phase consisted of acetonitrile and 5 mm ammonium acetate buffer (pH 6.0) 90:10 v/v, at a flow rate of 0.8 mL/min. The effluence was ionized in positive ion mode by electrospray ionization (ESI) and quantitated by mass spectrometry. The retention times of dorsomorphin and internal standard were found to be 2.13 and 1.13 min, respectively. Mean extraction recovery of dorsomorphin and internal standard in rat plasma was above 80%. Dorsomorphin calibration curve in rat plasma was linear (r2 ≥ 0.99) ranging from 0.005 to 10 µg/mL. Inter‐day and intra‐day precision and accuracy were found to be within 85–115% (coefficient of variation). This method was successfully applied for evaluation of the oral pharmacokinetic profile of dorsomorphin in male Wistar rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐throughput, simple, highly sensitive and specific LC‐MS/MS method has been developed for simultaneous estimation of simvastatin acid (SA), amlodipine (AD) and valsartan (VS) with 500 µL of human plasma using deuterated simvastatin acid as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode (MRM) using electrospray ionization. The assay procedure involved precipitation of SA, AD, VS and IS from plasma with acetonitrile. The total run time was 2.8 min and the elution of SA, AD, VS and IS occurred at 1.81, 1.12, 1.14 and 1.81 min, respectively; this was achieved with a mobile phase consisting of 0.02 m ammonium formate (pH 4.5):acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X‐Terra C18 column. A linear response function was established for the range of concentrations 0.5–50 ng/mL (> 0.994) for VS and 0.2–50 ng/mL (> 0.996) for SA and AD. The method validation parameters for all three analytes met the acceptance as per FDA guidelines. This novel method has been applied to human pharmacokinetic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
9‐Dehydro‐17‐hydro‐andrographolide (DHA) and sodium 9‐dehydro‐17‐hydro‐andrographolide‐19‐yl sulfate (DHAS) are active ingredients of xiyanping injection in clinical use. A simple, rapid and sensitive UHPLC‐ESI‐MS/MS method was developed for the determination of DHA and DHAS in rat plasma, and the pharmacokinetics of DHA and DHAS after intravenous administration of xiyanping injection was investigated. The plasma samples were treated with methanol to precipitate out protein, and the separation of DHA and DHAS was achieved on a Waters BEH C18 column with a mobile phase consisting of acetonitrile and 10 mmol/L ammonium acetate solution at a flow rate of 0.4 mL/min. DHA, DHAS and the internal standard (internal standard, IS) diethylstilbestrol were detected at negative ion mode. The precursor‐product ion pairs used in multiple reaction monitoring mode were: m/z 349.1 → 286.9 (DHA), m/z 428.9 → 96.0 (DHAS) and m/z 267.1 → 236.9 (IS). Calibration curves offered satisfactory linearity within the test range, and all correlation coefficients were >0.995. The lower limit of detection of DHA and DHAS in plasma samples were determined to be 0.1 ng/mL. The lower limit of quantitation was 0.5 ng/mL for DHA and DHAS. All the recoveries of the quality control samples were in the range of 86.0–102.4%. The ratios of matrix effect were between 89.2 and 105.1%. The method was fully validated and successfully applied to the pharmacokinetic study of DHA and DHAS in rats. The study showed that both DHA and DHAS were distributed and eliminated rapidly in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water–methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor–product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50–30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra‐ and inter‐day precisions were <7.9% and the accuracy (relative error) was within ±3.5%. The validated method was successfully applied to investigate the pharmacokinetics of mesalazine in healthy beagle dogs after rectal administration of mesalazine suppository. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A selective, sensitive and rapid ultra‐performance liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of etonogestrel (ENG) and ethinyl estradiol (EE) in human plasma. The analytes and their deuterated internal standards, ENG‐d7 and EE‐d4, were extracted from plasma samples by solid‐phase extraction on HyperSep™ Retain PEP cartridges. The chromatographic analysis was performed on an Acquity UPLC HSS Cyano column, 100 Å (50 × 2.1 mm, 1.8 μm), column using gradient mobile phase, acetonitrile and 2.0 mm ammonium trifluoroacetate at 0–1.7 min (65:35, v/v) and 1.8–2.7 min (95:5, v/v) with 0.250 mL/min flow rate. Analytes and IS protonated precursor → product ion transitions (ENG, m/z 325.2 → 257.2; EE, m/z 530.2 → 171.2; ENG‐d7, m/z 332.2 → 263.2; EE‐d4, m/z 534.2 → 171.2) were monitored on a Triple Quadrupole Mass spectrometer (TQMS), operating in multiple reaction monitoring and positive ionization mode. The calibration curves were established at 10.00–2500 pg/mL for ENG and 1.500–150.0 pg/mL for EE with a correlation coefficient (r2) ≥0.9996 for both. The validated method was successfully applied to support a bioequivalence study of 0.15 mg ENG and EE 0.03 mg tablet formulation, administered in 24 healthy Indian females. Method reliability was assessed by reanalysis of 94 incurred study samples.  相似文献   

18.
A rapid and sensitive high‐performance LC‐MS/MS method was developed and validated for the simultaneous quantification of codeine and its metabolite morphine in human plasma using donepezil as an internal standard (IS). Following a single liquid‐liquid extraction with ethyl acetate, the analytes were separated using an isocratic mobile phase on a C18 column and analyzed by MS/MS in the selected reaction monitoring mode using the respective [M+H]+ ions, mass‐to‐charge ratio (m/z) 300/165 for codeine, m/z 286/165 for morphine and m/z 380/91 for IS. The method exhibited a linear dynamic range of 0.2–100/0.5–250 ng/mL for codeine/morphine in human plasma, respectively. The lower LOQs were 0.2 and 0.5 ng/mL for codeine and its metabolite morphine using 0.5 mL of human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated LC‐MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 30 mg codeine phosphate.  相似文献   

19.
;A simple and reproducible method was developed for the quantification of ketamine and S(+)‐ketamine in dog plasma using a high‐performance liquid chromatography system coupled to a positive ion electrospray mass spectrometric analysis. Solid‐phase extraction was used for extracting analytes from dog plasma samples. The analytes were separated on a Zorbax SB C18 column (100 × 2.1 mm, 3.5 μm) with acetonitrile–formate buffer (10 mM ammonium formate and 0.3% formic acid) (17 : 83, v/v) as mobile phase at a flow‐rate of 0.2 mL/min. Detection was operated under selected ion monitoring mode. [M + H]+ at m/z 238 for ketamine and S(+)‐ketamine and [M + H]+ at m/z 180 for phenacetin (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration range 51.6–2580 ng/mL. The intra‐ and inter‐day precisions (RSD %) were within 11.3% and the assay accuracies ranged from 80.0 to 101.4%. Their average recoveries were greater than 91.1% at all test concentrations. The analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the toxicokinetics study and comparison of ketamine and S (+)‐ketamine following intravenous administration to dogs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Xanthii Fructus is extensively used as an herbal medicine. Ingestion of this herb is associated with severe hepatotoxicity and nephrotoxicity. Atractyloside and carboxyatractyloside are two dominative toxic constituents in Xanthii Fructus. However, their pharmacokinetic study is lacking. In this study, a novel high‐performance liquid chromatography‐tandem mass spectrometry method was developed to simultaneously quantify the rat plasma concentrations of atractyloside and carboxyatractyloside. After protein precipitation, the analytes were chromatographic separated on a ZORBAX Eclipse Plus column (2.1 × 150 mm id, 5 µm) under gradient elute. In the negative electrospray ionization mode, the transitions at m/z 725.3→645.4 for atractyloside, m/z 769.3→689.4 for carboxyatractyloside, and m/z 479.2→121.1 for paeoniflorin (the internal standard) were acquired by multiple reaction monitoring. This analytical method showed good linearity over 1–500 ng/mL for atractyloside and 2–500 ng/mL for carboxyatractyloside with acceptable precision and accuracy. No matrix effect, instability and carryover occurred in the analysis procedure. The extraction recoveries were greater than 85.0%. This method was applied to a preliminary pharmacokinetic study by orally administering Xanthii Fructus extract (9 g/kg) to rats, which was useful to evaluate the role of these two compounds in Xanthii Fructus‐induced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号