首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel reaction that provides chiral allenes by amino catalytic activation of either aldehydes or α,β‐unsaturated aldehydes for reaction with alkynyl‐substituted enones is presented. The reaction forms a variety of trisubstituted allenes in high yields and with excellent stereoselectivities. The utility of the reaction concept is demonstrated by the synthesis of chiral furan derivatives in high yields and stereoselectivities.  相似文献   

2.
A Brønsted‐acid‐catalyzed intramolecular enantioselective SN2′ reaction was developed utilizing trichloroacetimidate as a leaving group. The findings indicated that dual activation of the substrates is operative. This metal‐free allylic alkylation allows highly enantioselective access to 2‐vinylpyrrolidines bearing various substituents.  相似文献   

3.
4.
5.
An efficient one‐pot asymmetric synthesis of pyrazoles bearing a chiral quaternary stereocenter has been developed. Quinine‐derived thiourea catalyzed the enantioselective addition of pyrazolones to isatin‐derived ketimines, providing the corresponding acetylated pyrazoles after in situ treatment with Ac2O/Et3N. The corresponding pyrazoles were afforded in high yields and excellent enantioselectivities.  相似文献   

6.
Cooperative catalysis by [Pd(dba)2] and the chiral phosphoric acid BA1 in combination with the phosphoramidite ligand L8 enabled the efficient enantioselective amination of racemic allylic alcohols with a variety of functionalized amines. This catalytic protocol is highly regio‐ and stereoselective (up to e.r. 96:4) and furnishes valuable chiral amines in almost quantitative yield.  相似文献   

7.
The enantioselective synthesis of atropisomers is an emerging field, that in recent years reached fundamental results and put the bases for innovative applications. Organocatalysis is playing a central role in the realization of original synthesis for novel atropisomeric scaffolds.[1] In this short review, we would like to highlight the results obtained by our group and others in the field of axially enantioselective desymmetrization reactions using organocatalysis as main strategy.  相似文献   

8.
Indoles are one of the most ubiquitous subclass of N-heterocycles and are increasingly incorporated to design new axially chiral scaffolds. The rich profile of reactivity and N−H functionality allow chemical derivatization for enhanced medicinal, material and catalytic properties. Although asymmetric C−C coupling of two arenes gives the most direct access of axially chiral biaryl scaffolds, this chemistry has been the remit of metal catalysis and works efficiently on limited substrates. Our group has devoted special interest in devising novel organocatalytic arylation reactions to fabricate biaryl atropisomers. In this realm, indoles and derivatives have been reliably used as the arylation partners in combination with azoarenes, nitrosonapthalenes and quinone derivatives. Their efficient interaction with chiral phosphoric acid catalyst as well as the tunability of electronics and sterics have enabled excellent control of stereo-, chemo- and regioselectivity to furnish diverse scaffolds. In addition, indoles could act as nucleophiles in desymmetrization of 1,2,4-triazole-3,5-diones. This account provides a succinct illustration of these developments.  相似文献   

9.
A straightforward procedure to carry out the enantioselective benzoin reaction between aldehydes and ynones by employing a chiral N‐heterocyclic carbene (NHC) as catalyst was developed. Under the optimized reaction conditions, these ynones undergo a clean and selective 1,2‐addition with the catalytically generated Breslow intermediate, not observing any byproduct arising from competitive Stetter‐type reactivity. This procedure allows the preparation of tertiary alkynyl carbinols as highly enantioenriched materials, which have the remarkable potential to be used as chiral building blocks in organic synthesis.  相似文献   

10.
Mukaiyama aldol, Mannich, and Michael reactions are arguably amongst the most important C–C bond formation processes and enable access to highly relevant building blocks of various natural products. Their vinylogous extensions display equally high potential in the formation of important key intermediates featuring even higher functionalization possibilities through an additional conjugated C–C double bond. Hence, it is much desired to develop highly selective vinylogous methods in order to enable unconventional, more efficient asymmetric syntheses of biologically active compounds. In this regard, silyl-dienolates were discovered to display high regioselectivities due to their tendency toward γ-additions. The control of the enantio- and diastereoinduction of these processes have been for a long time dominated by transition metal catalysis, but it received serious competition by the application of organocatalytic approaches since the beginning of this century. In this review, the organocatalytic applications of silyl-dienolates in asymmetric vinylogous C–C bond formations are summarized, focusing on their scope, characteristics, and limitations.  相似文献   

11.
The use of chiral phosphinamides is relatively unexplored because of the lack of a general method for the synthesis. Reported herein is the development of a general, efficient, and highly enantioselective method for the synthesis of structurally diverse P‐stereogenic phosphinamides. The method relies on nucleophilic substitution of a chiral phosphinate derived from the versatile chiral phosphinyl transfer agent 1,3,2‐benzoxazaphosphinine‐2‐oxide. These chiral phosphinamides were utilized for the first synthesis of readily tunable P‐stereogenic Lewis base organocatalysts, which were used successfully for highly enantioselective catalysis.  相似文献   

12.
Presented here is a class of novel axially chiral aryl-p-quinones as platform molecules for the preparation of non-C2 symmetric biaryldiols. Two sets of aryl-p-quinone frameworks were synthesized with remarkable enantiocontrol by means of chiral phosphoric acid catalyzed enantioselective arylation of p-quinones by central-to-axial chirality conversion. These aryl-p-quinones were then used to access a wide spectrum of highly functionalized non-C2 symmetric biaryldiols with excellent retention of the enantiopurity.  相似文献   

13.
Organocatalytic methods have achieved spectacular advancements for the preparation of chiral molecules in highly enantioenriched forms. The fast development of this field can mainly be attributed to the evolution of general and reliable activation modes. The discovery and identification of new activation modes are therefore highly desirable to push the boundaries of asymmetric reactions. In this Minireview, recent advances in enantioselective carbonyl catalysis, one useful subbranch of organocatalysis for the efficient activation of simple amines, will be summarized. With elegantly designed chiral aldehyde catalysts, highly enantioselective and efficient asymmetric reactions can be developed. Continued development of enantioselective carbonyl catalysis is expected in the future.  相似文献   

14.
手性胺-质子酸是近年来发展起来的新型高效、高对映选择性的有机催化体系, 已成功应用于催化不对称Aldol反应、Michael加成反应、Diels-Alder反应和Strecker反应等许多重要的有机合成反应. 价廉易得的质子酸的引入不仅可促进活性中间体烯胺的生成, 并可通过形成的氢键稳定反应的过渡态, 从而显著提高该催化体系的催化活性和立体选择性. 对各类手性胺-质子酸催化剂在有机催化不对称合成反应中的应用、不对称诱导反应的机理、手性胺和质子酸的分子结构对其催化活性和不对称诱导活性的影响进行了评述.  相似文献   

15.
Radical cascade processes are invaluable for their ability to rapidly construct complex chiral molecules from simple substrates. However, implementing catalytic asymmetric variants is difficult. Reported herein is a visible‐light‐mediated organocatalytic strategy that exploits the excited‐state reactivity of chiral iminium ions to trigger radical cascade reactions with high enantioselectivity. By combining two sequential radical‐based bond‐forming events, the method converts unactivated olefins and α,β‐unsaturated aldehydes into chiral adducts in a single step. The implementation of an asymmetric three‐component radical cascade further demonstrates the complexity‐generating power of this photochemical strategy.  相似文献   

16.
A new asymmetric synthesis of chiral 1,4‐dioxanes and other oxa‐heterocycles has been developed by means of organocatalytic enantioselective desymmetrization of oxetanes. This mild process proceeds with exceedingly high efficiency and enantioselectivity to establish the quaternary stereocenters. This method complements the existing, yet limited, strategies for the synthesis of these oxa‐heterocycles.  相似文献   

17.
A DMAP‐N‐oxide, featuring an α‐amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O‐acylated azlactones afforded C‐acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP‐N‐oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP‐N‐oxides for asymmetric acyl transfer reactions.  相似文献   

18.
The first organocatalytic asymmetric synthesis of an advanced intermediate of (+)-sarain A was achieved. This approach featured the employment of an organocatalytic asymmetric Michael addition reaction and a nitrogen-to-carbon chirality transfer to forge three chiral centers, as well as a catalytic hydrosilylation for the chemoselective reduction of a key lactam intermediate. The tricyclic intermediate contained all the required functionalities for elaborating into (+)-sarain A.  相似文献   

19.
Unconjugated 2,5‐dienals are more reactive substrates than the corresponding fully conjugated α,β,γ,δ‐unsaturated aldehydes towards organocatalytic activation through trienamine intermediates. This difference in reactivity has been demonstrated in the Diels–Alder reaction with nitroalkenes, a reaction that proceeds with clean β,ε‐selectivity to afford the final products in high yields and stereoselectivities, the related polyconjugated 2,4‐dienals being completely unreactive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号