共查询到20条相似文献,搜索用时 15 毫秒
1.
Triptolide is one of the main active ingredients of Tripterygium wilfordii Hook. F. In this study, a sensitive LC–MS/MS method was established and validated to determine the concentration of triptolide in rat plasma. Triptolide and an internal standard [(5R)‐5‐hydroxytriptolide] were extracted from 100 μL of rat plasma with acetonitrile, and the dried residue was then reconstituted and reacted with benzylamine to produce benzylamine triptolide and benzylamine (5R)‐5‐hydroxytriptolide. Derivatization increased the sensitivity of triptolide detection by ~100‐fold. Quantification was performed using a QTRAP 5500 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode with an ion transition m/z 468.5 → 192.0 for benzylamine triptolide and m/z 484.3 → 192.1 for benzylamine (5R)‐5‐hydroxytriptolide. Good linearity was observed in the range of 0.030–100 ng/mL with a lower limit of quantitation of 0.030 ng/mL. The intra‐ and inter‐day precision was <6.5%, and the accuracy ranged from ?11.7 to ?4.4%. The recovery remained consistent and was reproducible at different concentrations. This method was successfully applied to the study of triptolide drug–drug interactions in Sprague–Dawley rats. With the use of itraconazole (40 mg/kg, p.o.) as a CYP3A inhibitor, the plasma exposure of triptolide in rats was increased by 36%. 相似文献
2.
《Biomedical chromatography : BMC》2017,31(11)
The measurement of catecholamines in human body fluids is requested frequently for the differential diagnosis and monitoring of pheochromocytoma. The methods in most clinical laboratories focus on high‐performance liquid chromatography coupled with electrochemical detection, which suffers from high background noise, low sensitivity, and poor separation. We reported and developed a robust high‐throughput liquid chromatography tandem mass spectrometry method in routine clinical laboratories for the measurement of urinary catecholamines for diagnosis of pheochromocytoma. The method was validated for consistent linearity, good recovery (88–112%), excellent stability and low carryover. Intra‐ and inter‐assay precision values for catecholamines were all below 3.35 and 4.83% respectively. Dilution linearity was investigated with satisfactory linearly dependent coefficients (r > 0.9988). The reference intervals were obtained from 310 results derived from patients in which the diagnosis of pheochromocytoma was excluded. This method was successfully used in our laboratory. The clinical characteristics of patients have been explored with satisfactory sensitivity and specificity. Therefore, we have developed a reliable assay for the liquid chromatography tandem mass spectrometry measurement of catecholamines in a routine clinical laboratory. The assay requires a small volume of urine, and all analytes are measured simultaneously. The assay is rapid and reliable to be executed, offering the potential for routine clinical laboratories. 相似文献
3.
An LC–MS/MS‐based bioanalytical method has been developed to measure the concentration of L‐threonate at its endogenous level in human plasma. Following isotope dilution and protein precipitation, the samples were acetylated and chromatographed under reversed‐phase conditions for baseline separation of the derivatized L‐threonate and its stereoisomer D‐erythronate. The method was assessed by a fit‐for‐purpose validation with a calibration range from 100 to 10,000 ng/mL. The intra‐run coefficients of variation (CVs) were <3.6% and the inter‐run CV was 3.2% for the QC samples at endogenous level. At the lower limit of quantitation, the intra‐run CV was 6.1% and the average inaccuracy was ?1.4%. This method provides an efficient and reliable quantitation of L‐threonate and could be useful to certain biomarker investigators. 相似文献
4.
Jana Cimlová Pavla Kružberská Zdeněk Švagera Petr Hušek Petr Šimek 《Journal of mass spectrometry : JMS》2012,47(3):294-302
Polar analytes that possess protic functional groups have often been treated with alkyl chloroformates to decrease their polarity and increase their volatility prior to gas chromatography–mass spectrometry analysis. This derivatization reaction has two distinct advantages. It proceeds smoothly in aqueous media, and the desired reaction products are efficiently separated from interfering ionic components by their extraction into a water‐immiscible organic phase. In the present work, the derivatization–liquid liquid sample preparation was examined in detail for analysis of a potential urinary dipeptide biomarker l ‐prolyl‐4‐l ‐hydroxyproline (PHP) by downstream liquid chromatography coupled to electrospray mass spectrometry. PHP was treated with a series of alkyl and fluoroalkyl chloroformates in aqueous media, and the detected reaction products were investigated. Smooth conversion of PHP into the N‐isobutyloxycarbonyl isobutyl ester was accomplished by the coupled action of isobutanol, isobutyl chloroformate and the pyridine catalyst. This derivative afforded a highest detector response from all the derivatized forms examined, including the nonderivatized PHP. A simple isocratic elution on a common RP‐C18 HPLC column coupled with tandem mass spectrometry, and use of the synthesized heptadeuterated analog (D7‐PHP) as an internal standard, enabled validation of the method and determination of PHP in human urine in less than 5 min. The in situ derivatization–liquid liquid extraction has thus been demonstrated to be a useful sample preparation strategy for the analysis of polar metabolites by liquid chromatography–tandem mass spectrometry in the complex urine matrix. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Xianqin Wang Zheng Xiang Xiaojun Cai Haiya Wu Xuebao Wang Junwei Li Meiling Zhang 《Biomedical chromatography : BMC》2011,25(7):833-837
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
6.
Ying Shen Huijun Li Jie Lu Xia Luo Qing Guan Liming Cheng 《Biomedical chromatography : BMC》2019,33(6)
Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are clinical biomarkers for diagnosis of neuroblastoma (NB), which commonly occurs in the childhood. Development and application of a robust LC–MS/MS method for fast determination of these biomarkers for optimal laboratory testing of NB is essential in clinical laboratories. In present study, we developed and validated a simple liquid chromatography tandem mass spectrometry (LC–MS/MS) method for quick clinical testing of VMA and HVA for diagnosis of NB. The method was validated according to the current CLSI C62‐A and FDA guidelines. The age‐adjusted pediatric reference intervals and diagnostic performance were evaluated in both 24 h urine and random urine. Injection‐to‐injection time was 3.5 min. Inter‐ and intra‐assay coefficients of variation (CVs) were ≤3.88%. The lower limit of quantification and the limit of detection were 0.50 and 0.25 μmol/L for both VMA and HVA. Recoveries of VMA and HVA were in the ranges of 85–109% and 86–100% with CVs ≤5.76%. This method was free from significant matrix effect, carryover and interference. The establishment of age‐adjusted pediatric reference intervals by this LC–MS/MS method was favorable for the improvement in diagnostic performance, which was crucial for correct interpretation of test results from children in both 24 h and random urine. 相似文献
7.
《Biomedical chromatography : BMC》2017,31(2)
A reliable, high‐throughput and sensitive LC–MS/MS procedure was developed and validated for the determination of five tyrosine kinase inhibitors in human plasma. Following their extraction from human plasma, samples were eluted on a RP Luna®‐PFP 100 Å column using a mobile phase system composed of acetonitrile and 0.01 m ammonium formate in water (pH ~4.1) with a ratio of (50:50, v /v) flowing at 0.3 mL min−1. The mass spectrometer was operating with electrospray ionization in the positive ion multiple reaction monitoring mode. The proposed methodology resulted in linear calibration plots with correlation coefficients values of r 2 = 0.9995–0.9999 from concentration ranges of 2.5–100 ng mL−1 for imatinib, 5.0–100 ng mL−1 for sorafenib, tofacitinib and afatinib, and 1.0–100 ng mL−1 for cabozantinib. The procedure was validated in terms of its specificity, limit of detection (0.32–1.71 ng mL−1), lower limit of quantification (0.97–5.07 ng mL−1), intra‐ and inter assay accuracy (−3.83 to +2.40%) and precision (<3.37%), matrix effect and recovery and stability. Our results demonstrated that the proposed method is highly reliable for routine quantification of the investigated tyrosine kinase inhibitors in human plasma and can be efficiently applied in the rapid and sensitive analysis of their clinical samples. 相似文献
8.
Cases of poisoning by p‐phenylenediamine (PPD) are detected sporadically. Recently an article on the development and validation of an LC–MS/MS method for the detection of PPD and its metabolites, N‐acetyl‐p‐phenylenediamine (MAPPD) and N,N‐diacetyl‐p‐phenylenediamine (DAPPD) in blood was published. In the current study this method for detection of these compounds was validated and applied to urine samples. The analytes were extracted from urine samples with methylene chloride and ammonium hydroxide as alkaline medium. Detection was performed by LC–MS/MS using electrospray positive ionization under multiple reaction‐monitoring mode. Calibration curves were linear in the range 5–2000 ng/mL for all analytes. Intra‐ and inter‐assay imprecisions were within 1.58–9.52 and 5.43–9.45%, respectively, for PPD, MAPPD and DAPPD. Inter‐assay accuracies were within ?7.43 and 7.36 for all compounds. The lower limit of quantification was 5 ng/mL for all analytes. The method, which complies with the validation criteria, was successfully applied to the analysis of PPD, MAPPD and DAPPD in human urine samples collected from clinical and postmortem cases. 相似文献
9.
Yusuke Yoshimura Ryuichiro Hibi Akiho Nakata Moeka Togashi Shoujiro Ogawa Takayuki Ishige Mamoru Satoh Fumio Nomura Tatsuya Higashi 《Biomedical chromatography : BMC》2019,33(7)
A liquid chromatography/electrospray ionization–tandem mass spectrometry‐based method was developed for the identification of the conjugation positions of the monoglucuronides of 25‐hydroxyvitamin D3 [25(OH)D3] and 24,25‐dihydroxyvitamin D3 [24,25(OH)2D3] in human urine. The method employed derivatization with 4‐(4‐dimethylaminophenyl)‐1,2,4‐triazoline‐3,5‐dione to convert the glucuronides into fragmentable derivatives, which provided useful product ions for identifying the conjugation positions during the MS/MS. The derivatization also enhanced the assay sensitivity and specificity for urine sample analysis. The positional isomeric monoglucuronides, 25(OH)D3‐3‐ and ‐25‐glucuronides, or 24,25(OH)2D3‐3‐, ‐24‐ and ‐25‐glucuronides, were completely separated from each other under the optimized LC conditions. Using this method, the conjugation positions were successfully determined to be the C3 and C24 positions for the glucuronidated 25(OH)D3 and 24,25(OH)2D3, respectively. The 3‐glucuronide was not present for 24,25(OH)2D3, unlike 25(OH)D3, thus we found that selective glucuronidation occurs at the C24‐hydroxy group for 24,25(OH)2D3. 相似文献
10.
Bjoern Moosmann Laura M. Huppertz Melanie Hutter Armin Buchwald Sascha Ferlaino Volker Auwärter 《Journal of mass spectrometry : JMS》2013,48(11):1150-1159
The appearance of pyrazolam in Internet shops selling ‘research chemicals’ in 2012 marked the beginning of designer benzodiazepines being sold as recreational drugs or ‘self medication’. With recent changes in national narcotics laws in many countries, where two uncontrolled benzodiazepines (phenazepam and etizolam), which were marketed by pharmaceutical companies in some countries, were scheduled, clandestine laboratories seem to turn to poorly characterized research drug candidates as legal substitutes. Following the appearance of pyrazolam, it comes with no surprise that recently, flubromazepam (7‐bromo‐5‐(2‐fluorophenyl)‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one), a second designer benzodiazepine, was offered on the market. In this article, this new compound was characterized using nuclear magnetic resonance, gas chromatography‐mass spectrometry (GC–MS), liquid chromatography–mass spectrometry (LC–MS/MS) and liquid chromatography quadrupole time‐of‐flight MS (LC–Q–ToF–MS). Additionally, a study was carried out, in which one of the authors consumed 4 mg of flubromazepam to gain preliminary data on the pharmacokinetic properties and the metabolism of this compound. For this purpose, serum as well as urine samples were collected for up to 31 days post‐ingestion and analyzed applying LC–MS/MS and LC–Q‐ToF‐MS techniques. On the basis of this study, flubromazepam appears to have an extremely long elimination half‐life of more than 100 h. One monohydroxylated compound and the debrominated compound could be identified as the predominant metabolites, the first allowing a detection of a consumption for up to 28 days post‐ingestion when analyzing urine samples in our case. Additionally, various immunochemical assays were evaluated, showing that the cross‐reactivity of the used assay seems not to be sufficient for safe detection of the applied dose in urine samples, bearing the risk that it could be misused in drug‐withdrawal settings or in other circumstances requiring regular drug testing. Furthermore, it may be used in drug‐facilitated crimes without being detected. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
Rong Shao Ling‐yan Yu Hong‐gang Lou Zou‐rong Ruan Bo Jiang Jin‐liang Chen 《Biomedical chromatography : BMC》2016,30(4):632-637
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
《Biomedical chromatography : BMC》2018,32(9)
A rapid, sensitive and reproducible LC–MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB‐C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive‐ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00–1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra‐ and inter‐day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax, 1074 ± 373 ng/mL; AUC0–72, 13591 ± 4557 ng h/mL; AUC0–∞, 13,712 ± 4613 ng h/mL; Tmax, 3.29 ± 1.23 h; and t1/2, 8.89 ± 1.23 h. 相似文献
13.
《Biomedical chromatography : BMC》2017,31(11)
A simple LC–MS/MS method facilitated by salting‐out assisted liquid–liquid extraction (SALLE) was applied to simultaneously investigate the pharmacokinetics of trans‐ resveratrol (Res) and its major glucuronide and sulfate conjugates in rat plasma. Acetonitrile–methanol (80:20, v /v) and ammonium acetate (10 mol L−1) were used as extractant and salting‐out reagent to locate the target analytes in the supernatant after the aqueous and organic phase stratification, then the analytes were determined via gradient elution by LC–MS/MS in negative mode in a single run. The analytical method was validated with good selectivity, acceptable accuracy (>85%) and low variation of precision (<15%). SALLE showed better extraction efficiency of target glucuronide and sulfate conjugates (>80%). The method was successfully applied to determine Res and its four conjugated metabolites in rat after Res administration (intragastric, 50 mg kg−1; intravenous, 10 mg kg−1). The systemic exposures to Res conjugates were much higher than those to Res (AUC0–t , i.v., 7.43 μm h; p.o., 8.31 μm h); Res‐3‐O‐β ‐d ‐glucuronide was the major metabolite (AUC0–t , i.v., 66.1 μm h; p.o., 333.4 μm h). The bioavailability of Res was estimated to be ~22.4%. The reproducible SALLE method simplified the sample preparation, drastically improved the accuracy of the concomitant assay and gave full consideration of extraction recovery to each target analyte in bio‐samples. 相似文献
14.
Avi Weissberg Maor Elgarisi Moran Madmon Avital Shifrovich Merav Blanca Shai Dagan 《Journal of mass spectrometry : JMS》2019,54(3):274-280
The chromatograms obtained from the gas chromatography‐electron ionization mass spectrometric (GC‐EI‐MS) analysis of extracts containing G‐nerve agents in the presence of diesel, gasoline, etc., are dominated by hydrocarbon backgrounds that “mask” the G‐nerve agents, leading to severe difficulties in identification. This paper presents a practical solution for this challenge by transferring the G‐nerve agents from the organic phase into the aqueous phase using liquid‐liquid extraction (LLE), followed by derivatization with 2‐[(dimethylamino)methyl]phenol (2‐DMAMP), allowing ultrasensitive LC‐ESI‐MS/MS analysis of the G‐derivatives. The proposed approach enables rapid identification of trace amounts of G‐nerve agents with limits of identification (LOIs) at the pg/mL scale. 相似文献
15.
《Biomedical chromatography : BMC》2017,31(5)
Systemic arterial hypertension is a major risk factor for cerebrovascular disease. Therefore, adequate control of blood pressure is of enormous importance. One of the many fixed‐dose single‐pill antihypertensive formulations available on the market is the combination of nebivolol and hydrochlorothiazide. The objective of this study was to develop two distinct high‐performance liquid chromatography coupled to tandem mass spectrometry methods to simultaneously quantify nebivolol and hydrochlorothiazide in human plasma. The methods were employed in a bioequivalence study, the first assay involving a nebivolol fixed‐dose single‐pill formulation based on healthy Brazilian volunteers. Nebilet HCT™ (nebivolol 5 mg + hydrochlorothiazide 12.5 mg tablet, manufactured by Menarini) was the test formulation. The reference formulations were Nebilet™ (nebivolol 5 mg tablet, manufactured by Menarini) and Clorana™ (hydrochlorothiazide 25 mg tablet, manufactured by Sanofi). For both analytes, liquid–liquid extraction was employed for sample preparation and the chromatographic run time was 3.5 min. The limits of quantification validated were 0.02 ng/mL for nebivolol and 1 ng/mL for hydrochlorothiazide. Since the 90% CI for C max, AUC(0–last) and AUC(0–inf) individual test/reference ratios were within the 80–125% interval indicative of bioequivalence, it was concluded that Nebilet HCT™ is bioequivalent to Nebilet™ and Clorana™. 相似文献
16.
Noriko Matsunaga Takashi Kitahara Makiko Yamada Kayoko Sato Yukinobu Kodama Hitoshi Sasaki 《Biomedical chromatography : BMC》2019,33(2)
Sunitinib is an orally administered tyrosine kinase inhibitor. Therapeutic drug monitoring is an important component of the follow‐up of patients because of high interpatient variability in the pharmacokinetics of sunitinib and large variabilities in its efficacy and toxicity. The aim of the present study was to examine the light stability of sunitinib and confirm the effects of light exposure on sunitinib measurements by LC–MS/MS. Sunitinib and its active metabolite, SU12662, convert Z isomers to E isomers with exposure to light. The Z–E photoisomerization ratio reached a plateau at 35% for both E isomers in methanol within 15 min of normal light exposure (700 lx). However, the Z isomer of the sunitinib and SU12662 peak area ratios in plasma decreased by 10% within 15 min. These results suggest that sunitinib samples need to be handled without light exposure in all sample preparation steps. Alternatively, it should be measured sunitinib and SU12662 after the sample has reached photoisomerical equilibrium. These results suggest that the sunitinib therapeutic range changes depending on light conditions during sample handling in sunitinib and SU12662 measurements. 相似文献
17.
Jinhang Li Yanhong Shi Yan Xu Li Yang Zhengtao Wang Han Han Rui Wang 《Biomedical chromatography : BMC》2019,33(10)
Several chemical and biological studies have revealed R,S‐goitrin as the main bioactive constituent of Isatis indigotica Fort., responsible for antiviral antiendotoxin activity; however, few pharmacokinetic studies have been conducted. To comprehend the kinetics of R,S‐goitrin and promote its curative application, a rapid and sensitive UHPLC–MS/MS method was developed. The selected reaction monitoring transitions were m/z 130.0 → 70.0 for R,S‐goitrin and m/z 181.1 → 124.0 for the internal standard in a positive‐ion mode. The established UHPLC–MS/MS method achieved good linearity for R,S‐goitrin at 10–2000 ng/mL. The intra‐ and interday accuracy levels were within ±9.7%, whereas the intraday and interday precision levels were <11.3%. The extraction recovery, stability and matrix effect were within acceptable limits. The validated method was successfully applied for the pharmacokinetic analysis of R,S‐goitrin in rats after oral administration. Moreover, a total of six metabolites were structurally identified through UHPLC–Q/TOF–MS. The proposed metabolic pathways of R,S‐goitrin in rats involve demethylation, acetylation, glutathionylation and oxygenation. 相似文献
18.
A sensitive, selective and rapid ultra‐performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of flavokawain B in rat plasma using myrislignan as an internal standard. Sample preparation was accomplished through a protein precipitation extraction process. Chromatographic resolution of flavokawain B and the IS was achieved on an Agilent XDB‐C18 column (2.1 × 100 mm, 1.8 μm) using a gradient mobile phase comprising 0.1% formic acid in water and acetonitrile delivered at a flow rate of 0.5 mL/min. Flavokawain B and the IS eluted at 3.27 and 1.96 min, respectively. The total chromatographic run time was 6.0 min. A linear response function was constructed in the concentration range 0.524–1048 ng/mL. Method validation was performed as per the US Food and Drug Administration guidelines and the results met the acceptance criteria. Intra‐ and inter‐day accuracy and precision were in the ranges of ?14.3–13.2 and 3.4–11.8%, respectively. Flavokawain B was demonstrated to be stable under various stability conditions. This method has been applied to a pharmacokinetic study in rats. 相似文献
19.
A simple and reliable liquid chromatography–mass spectrometry (LC–MS) method was developed for simultaneous determination of saikosaponin A, saikosaponin B1, saikosaponin C, saikosaponin D and saikosaponin F in rat plasma using glycyrrhetinic acid as an internal standard (IS). The separation was operated on a Waters BEH C18 column. The mobile phases of gradient elution consisted of acetonitrile (A) and 0.1% aqueous acetic acid (B). The mass spectrometric detection was accomplished in multiple reaction monitoring mode. The five saponins displayed good linearity (r2 > 0.9996). The lower limits of quantitation of saikosaponin A, saikosaponin B1, saikosaponin C, saikosaponin D and saikosaponin F were determined to be 2.9, 2.3, 3.5, 2.9 and 3.1 ng/mL, respectively. Moreover, the intra‐ and inter‐day precisions of the five saponins showed an RSD within 2.96%, whereas the accuracy (RE) ranged from ?2.28 to 2.78%. Finally, the developed method was fully validated and applied to a comparative pharmacokinetic study of the five bioactive saponins in rats following oral administration of crude and vinegar‐processed Bupleurum scorzonerifolium. 相似文献
20.
Laszlo Prokai 《Journal of mass spectrometry : JMS》2012,47(12):1601-1611
Protein tyrosine nitration is associated with oxidative stress and various human diseases. Tandem mass spectrometry has been the method of choice for the identification and localization of this posttranslational modification to understand the underlying mechanisms and functional consequences. Due to the electron predator effect of the nitro group limiting fragmentation of the peptide backbone, electron‐based dissociation has not been applicable, however, to nitrotyrosine‐containing peptides. A straightforward conversion of the nitrotyrosine to the aminotyrosine residues is introduced to address this limitation. When tested with nitrated ubiquitin and human serum albumin as model proteins in top‐down and bottom‐up approaches, respectively, this chemical derivatization enhanced backbone fragmentation of the corresponding nitroproteins and nitropeptides by electron capture dissociation (ECD). Increased sequence coverage has been obtained by combining in the bottom‐up strategy the conversion of nitrotyrosine to aminotyrosine and introducing, in addition to trypsin, a further digesting enzyme of complementary specificity, when protein nitration was mapped by liquid chromatography–electrospray ionization tandem mass spectrometry using both collision‐induced dissociation (CID) and ECD. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献