首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to realize artificial photosynthetic devices for splitting water to H2 and O2 (2 H2O+→2 H2+O2), it is desirable to use a wider wavelength range of light that extends to a lower energy region of the solar spectrum. Here we report a triruthenium photosensitizer [Ru3(dmbpy)6(μ‐HAT)]6+ (dmbpy=4,4′‐dimethyl‐2,2′‐bipyridine, HAT=1,4,5,8,9,12‐hexaazatriphenylene), which absorbs near‐infrared light up to 800 nm based on its metal‐to‐ligand charge transfer (1MLCT) transition. Importantly, [Ru3(dmbpy)6(μ‐HAT)]6+ is found to be the first example of a photosensitizer which can drive H2 evolution under the illumination of near‐infrared light above 700 nm. The electrochemical and photochemical studies reveal that the reductive quenching within the ion‐pair adducts of [Ru3(dmbpy)6(μ‐HAT)]6+ and ascorbate anions affords a singly reduced form of [Ru3(dmbpy)6(μ‐HAT)]6+, which is used as a reducing equivalent in the subsequent water reduction process.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
While natural photosynthesis serves as the model system for efficient charge separation and decoupling of redox reactions, bio‐inspired artificial systems typically lack applicability owing to synthetic challenges and structural complexity. We present herein a simple and inexpensive system that, under solar irradiation, forms highly reductive radicals in the presence of an electron donor, with lifetimes exceeding the diurnal cycle. This radical species is formed within a cyanamide‐functionalized polymeric network of heptazine units and can give off its trapped electrons in the dark to yield H2, triggered by a co‐catalyst, thus enabling the temporal decoupling of the light and dark reactions of photocatalytic hydrogen production through the radical′s longevity. The system introduced here thus demonstrates a new approach for storing sunlight as long‐lived radicals, and provides the structural basis for designing photocatalysts with long‐lived photo‐induced states.  相似文献   

11.
12.
13.
14.
15.
16.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1−xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g−1 h−1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号