首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A highly sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry method is described for the simultaneous determination of nomegestrol acetate (NOMAC), a highly selective progestogen, and estradiol (E2), a natural estrogen in human plasma. NOMAC was obtained from plasma by solid‐phase extraction, while E2 was first separated by liquid–liquid extraction with methyl tert‐butyl ether followed by derivatization with dansyl chloride. Deuterated internal standards, NOMAC‐d5 and E2‐d4 were used for better control of extraction conditions and ionization efficiency. The assay recovery of the analytes was within 90–99%. The analytes were separated on UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using a mobile phase comprising of acetonitrile and 3.0 mm ammonium trifluoroacetate in water (80:20, v/v) with a resolution factor (Rs) of 3.21. The calibration curves were linear from 0.01 to 10.0 ng/mL for NOMAC and from 1.00 to 1000 pg/mL for E2, respectively. The intra‐ and inter‐batch precision was ≤5.8% and the accuracy of quality control samples ranged from 96.7 to 103.4% for both analytes. The practical applicability of the method is demonstrated by analyzing samples from 18 healthy postmenopausal women after oral administration of 2.5 mg nomegestrol acetate and 1.5 mg estradiol film‐coated tablets under fasting.  相似文献   

3.
An improved sample preparation method was developed to enhance acrylamide recovery in high‐fat foods. Prior to concentration, distilled deionized water was added to protect acrylamide from degradation, resulting in a higher acrylamide recovery rate from fried potato chips. A Chrome‐Matrix C18 column (2.6 μm, 2.1 × 100 mm) was used for the first time to analyze acrylamide levels using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry, displaying good separation of acrylamide from interference. A solid‐phase extraction procedure was avoided, and an average recovery of >89.00% was achieved from different food matrices for three different acrylamide spiking levels. Good reproducibility was observed, with an intraday relative standard deviation of 0.04–2.38%, and an interday relative standard deviation of 2.34–3.26%. Thus, combining the improved sample preparation method for acrylamide analysis with the separation on a Chrome‐Matrix C18 column (2.6 μm, 2.1 × 100 mm) using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry is highly useful for analyzing acrylamide levels in complex food matrices.  相似文献   

4.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

5.
A rapid, sensitive and rugged solid‐phase extraction ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed for determination of paroxetine in human plasma. The procedure for sample preparation includes simple SPE extraction procedure coupled with Hypersil Gold C18 column (100 mm ? 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow‐rate of 0.350 mL/min and fluoxetine was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reactions monitoring mode via electrospray ionization. Using 500 μL plasma, the methods were validated over the concentration range 0.050–16.710 ng/mL for paroxetine, with a lower limit of quantification of 0.050 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recovery was 69.2 and 74.4% for paroxetine and fluoxetine respectively. Total run time was only 1.9 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of ramelteon and its active metabolite M‐II in human plasma. After extraction from 200 μL of plasma by protein precipitation, the analytes and internal standard (IS) diazepam were separated on a Hedera ODS‐2 (5 μm, 150 × 2.1 mm) column with a mobile phase consisted of methanol–0.1% formic acid in 10 mm ammonium acetate solution (85:15, v/v) delivered at a flow rate of 0.5 mL/min. Mass spectrometric detection was operated in positive multiple reaction monitoring mode. The calibration curves were linear over the concentration range of 0.0500–30.0 ng/mL for ramelteon and 1.00–250 ng/mL for M‐II, respectively. This method was successfully applied to a clinical pharmacokinetic study in healthy Chinese volunteers after a single oral administration of ramelteon. The maximum plasma concentration (Cmax), the time to the Cmax and the elimination half‐life for ramelteon were 4.50 ± 4.64ng/mL, 0.8 ± 0.4h and 1.0 ± 0.9 h, respectively, and for M‐II were 136 ± 36 ng/mL, 1.1 ± 0.5 h, 2.1 ± 0.4 h, respectively.  相似文献   

8.
A simple, robust and specific liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated to determine the concentration of corticosterone (Cort) which is usually regarded as a stress biomarker in mouse serum. Since Cort is an endogenous hormone, a ‘surrogate analyte’ strategy was adopted using the stable isotope‐deuterated corticosterone as a surrogate of the authentic analyte to generate the calibration curve. With telmisartan as the internal standard, the analytes were extracted with methanol, ethanol and acetone (1:1:1, v/v/v) and separated on a XTerra C18 (2.1 × 50 mm, 3.5 µm) column using a mobile phase consisting of 0.2% formic acid in water–methanol (30:70, v/v). Detection was performed in multiple reaction monitoring mode with an electrospray ionization source operated in positive ion mode. The standard curves were linear (r2 > 0.999) over the dynamic range of 8.60–430 ng/mL, with a lower limit of quantification of 8.60 ng/mL. The intra‐ and inter‐assay precisions were less than 15.0% of the relative standard deviation. This method was further used for analysis of serum samples from C57B/L tumor‐bearing mice before and after the treatment of fluoxetine. Validation of the assay and its application to the analysis demonstrated that the method was applicable to determine meaningful changes in Cort concentrations in serum samples of the tumor‐bearing mice for the stress status evaluation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
An ultra‐performance liquid chromatography tandem mass spectrometry method was developed for the simultaneous determination of protocatechuic acid, catechin, gallocatechin and formononetin in rat plasma, with genkwanin as the internal standard in this study. Plasma samples were prepared by liquid–liquid extraction with ethyl acetate. The four components were separated on an Agilent Zorbax Eclipse Plus C18 column (2.1 × 50 mm, 1.8 μm) with the mobile phase consisting of water containing 0.05% formic acid and methanol (35:65, v/v), and detected by negative ion electrospray ionization in the selected reaction monitoring mode. The method was linear for all analytes over the investigated ranges, with all correlation coefficients >0.99. The validated lower limit of quantification was 0.5 ng/mL for protocatechuic acid, catechin, and gallocatechin and 0.8 ng/mL for formononetin. The intra‐ and inter‐day precisions (RSD, %) were <13.1%, and accuracy (RE, %) ranged from ?13.8 to 9.9%. The mean absolute extraction recoveries of the analytes and internal standard from rat plasma were all >80.7%. The validated method was successfully applied for the first time to investigate the pharmacokinetics of four chemical ingredients after oral administration of Caulis Spatholobi Extract in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

12.
A simple and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous determination of isoquercitrin, kaempferol‐3‐O‐rutinoside and tiliroside in rat plasma. Plasma samples were deproteinized with methanol and separated on a Hypersil Gold C18 column (2.1 × 50 mm, i.d., 3.0 μm) using gradient elution with the mobile phase of water and methanol at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed with negative ion electrospray ionization in selected reaction monitoring mode. All analytes showed good linearity over their investigated concentration ranges (r2 > 0.99). The lower limit of quantification was 1.0 ng/mL for isoquercitrin and 2.0 ng/mL for kaempferol‐3‐O‐rutinoside and tiliroside, respectively. Intra‐ and inter‐day precisions were <8.2% and accuracy ranged from −11.5 to 9.7%. The mean extraction recoveries of analytes and IS from rat plasma were >80.4%. The assay was successfully applied to investigate the pharmacokinetic study of the three ingredients after oral administration of Rubus chingii Hu to rats.  相似文献   

13.
A sensitive and specific high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the determination of Grayanotoxin I (GTX I) and Grayanotoxin III (GTX III) in rat whole blood. Grayanotoxins (GTXs) and clindamycin as internal standard (IS) were extracted from rat blood via solid‐phase extraction using PEP solid‐phase extraction cartridges. Chromatographic separation of the analytes was achieved on a Kinetex C18 (100 × 2.1 mm, 2.6 µm) reversed‐phase column using a gradient elution with the mobile phase of 1% acetic acid in water and methanol at a flow rate of 0.2 mL/min. Electrospray ionization mass spectrometry was operated in the positive ion mode with multiple reaction monitoring. The calibration curves obtained were linear over the concentration range of 1–100 ng/mL with a lower limit of quantification of 1 ng/mL for GTXs. The relative standard deviation of intra‐day and inter‐day precision was below 6.8% and accuracy ranged from 94.8 to 106.6%. The analytes were stable in the stability studies. The validated method was successfully applied to the quantification and toxicokinetic study of GTXs in rats for the first time after oral administration of 11.52 mg/kg mad honey and 0.35 mg/kg GTX III, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and reproducible ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the simultaneous determination of atenolol, a β‐adrenergic receptor‐blocker and chlorthalidone, a monosulfonamyl diuretic in human plasma, using atenolol‐d7 and chlorthalidone‐d4 as the internal standards (ISs). Following solid‐phase extraction on Phenomenex Strata‐X cartridges using 100 μL human plasma sample, the analytes and ISs were separated on an Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 µm) column using a mobile phase consisting of 0.1% formic acid–acetonitrile (25:75, v/v). A tandem mass spectrometer equipped with electrospray ionization was used as a detector in the positive ionization mode for both analytes. The linear concentration range was established as 0.50–500 ng/mL for atenolol and 0.25–150 ng/mL for chlorthalidone. Extraction recoveries were within 95–103% and ion suppression/enhancement, expressed as IS‐normalized matrix factors, ranged from 0.95 to 1.06 for both the analytes. Intra‐batch and inter‐batch precision (CV) and accuracy values were 2.37–5.91 and 96.1–103.2%, respectively. Stability of analytes in plasma was evaluated under different conditions, such as bench‐top, freeze–thaw, dry and wet extract and long‐term. The developed method was superior to the existing methods for the simultaneous determination of atenolol and chlorthalidone in human plasma with respect to the sensitivity, chromatographic analysis time and plasma volume for processing. Further, it was successfully applied to support a bioequivalence study of 50 mg atenolol + 12.5 mg chlorthalidone in 28 healthy Indian subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid and sensitive high‐performance liquid chromatography and electrospray tandem mass spectrometry method was developed and validated for estimation of fulvestrant in rabbit plasma using liquid–liquid extraction. The separation and quantification of fulvestrant were achieved by reverse‐phase chromatography on a Sunfire C18 column (50 × 2.1. i.d., 3.5 μm) with isocratic elution at a flow rate of 300 μL/min using norethistrone as an internal standard from 500 μL plasma sample. The method was validated over the concentration range from 0.092 to 16.937 ng/mL with a lower limit of detection of 0.023 ng/mL. The intra‐day and inter‐day accuracy and precision were within 10%. The recovery was 85 and 90% for fulvestrant and norethistrone respectively. The chromatographic run time was only 2.5 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid and sensitive ultraperformance liquid chromatography tandem mass spectrometry assay was developed for the simultaneous analysis of oxcarbazepine and its main metabolite in human plasma. The assay involves a simple solid‐phase extraction procedure of 0.3 mL of human plasma and analysis was performed on a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionization. Separation was achieved on an Acquity UPLC™ BEH C18 column (50 × 2.1 mm, i.d., 1.7 µm) with isocratic elution at a flow‐rate of 0.25 mL/min and imipramine was used as the internal standard. The standard calibration curve was linear over the range 9.580–5070.205 ng/mL for oxcarbazepine (OXC) and 19.444–10290.800 ng/mL for 10,11‐dihydro‐10‐hydroxycarbamazepine (MHD), expressed by the linear correlation coefficient r2, which was better than 0.995 for OXC and MHD. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recoveries were 81.0, 89.6 and 66.6% for OXC, MHD and imipramine, respectively. The total run time was 1.5 min only for each sample, which makes it possible to analyze more than 350 samples per day. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and reliable ultra‐high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC‐MS/MS) method was developed and validated for the simultaneous determination of four active components of Semen Cassiae extract (aurantio‐obtusin, chrysoobtusin, obtusin and 1‐desmethylobtusin) in rat plasma after oral administration. Chromatographic separation was achieved on an Agilent Poroshell 120 C18 column with gradient elution using a mobile phase that consisted of acetonitrile‐ammonium acetate in water (30 mm ) at a flow rate of 0.4 mL/min. Detection was performed by a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode. The calibration curve was linear over a range of 3.24–1296 ng/mL for aurantio‐obtusin, 0.77–618 ng/mL for chrysoobtusin, 34.55–1818 ng/mL for obtusin and 1.86–1485 ng/mL for 1‐desmethylobtusin. Inter‐ and intra‐day assay variation was <15%. All analytes were shown to be stable during all sample storage and analysis procedures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A bioanalytical method was developed and validated for the quantification of capreomycin (Cm) analogs, Cm IA and Cm IB, in human plasma. This implemented ion‐pairing solid phase extraction, followed by ion‐pairing high‐performance liquid chromatography, with tandem mass spectrometry detection. Chromatographic separation was achieved using a Discovery C18, 5 μm, 4.6 × 50 mm analytical column. An isocratic mobile phase consisting of water and acetonitrile with 0.1% formic acid and 4mm heptafluorobutyric acid (80:20; v/v) was used at a flow‐rate of 500 μL/min. An AB Sciex API 3000 mass spectrometer at unit resolution, in multiple reaction monitoring mode, was used for detection. Electrospray ionization was used for ion production. The method was successfully validated for the range 469–30,000 ng/mL for Cm IA and for Cm IB, with cefotaxime as the internal standard. The within‐ and between‐day precision determinations for Cm IA and IB, expressed as the percentage coefficient of variation, were < 20.0% at the lower limit of quantification (LLOQ) and < 8.2% at all other test concentrations. Recovery of both analogs was > 72.3% and reproducible at the low, medium and high end of the calibration range. No significant matrix effects were observed for the analyte. The assay performed well when applied to clinical samples generated from children in a clinical multidrug resistant tuberculosis research study in South Africa.  相似文献   

19.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An assay based on liquid chromatography/tandem mass spectrometry is presented for the fast, precise and sensitive quantitation of Δ9‐tetrahydrocannabinolic acid A (THCA) in serum. THCA is the biogenetic precursor of Δ9‐tetrahydrocannabinol in cannabis and has aroused interest in the pharmacological and forensic field especially as a potential marker for recent cannabis use. After addition of deuterated THCA, synthesized from D3‐THC as starting material, and protein precipitation, the analytes were separated using gradient elution on a Luna C18 column (150 × 2.0 mm × 5 µm) with 0.1% formic acid and acetonitrile/0.1% formic acid. Data acquisition was performed on a triple quadrupole linear ion trap mass spectrometer in multiple reaction monitoring mode with negative electrospray ionization. After optimization, the following sample preparation procedure was used: 200 μL serum was spiked with internal standard solution and methanol and then precipitated ‘in fractions’ with 500 μL ice‐cold acetonitrile. After storage and centrifugation, the supernatant was evaporated and the residue redissolved in mobile phase. The assay was fully validated according to international guidelines including, for the first time, the assessment of matrix effects and stability experiments. Limit of detection was 0.1 ng/mL, and limit of quantification was 1.0 ng/mL. The method was found to be selective and proved to be linear over a range of 1.0 to 100 ng/mL using a 1/x weighted calibration model with regression coefficients >0.9996. Accuracy and precision data were within the required limits (RSD ≤ 8.6%, bias: 2.4 to 11.4%), extractive yield was greater than 84%. The analytes were stable in serum samples after three freeze/thaw cycles and storage at ?20 °C for one month. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号