首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The voltammetry of copper in organic ligand/chloride media is dominated by the formation of CuCl?2 species and by induced adsorption of Cu(I) in organic coatings on the electrodes. These phenomena are utilised in a novel method for evaluating Cu(II)/organic ligand interactions, based on the principle of ligand exchange. The Cu(II)/organic species competes with glycine which forms copper glycinate. These two complexes can be distinguished voltammetrically: copper glycinate gives a higher surface excess of copper at a gelatin-coated hanging mercury drop electrode, partly because of the increased production of CuCl?2 from copper glycinate at the electrode surface. The method proved satisfactory for pure ligand/surfactant/chloride media and for estuarine waters. It is shown that there are two type of Cu(II)-binding ligand in estuarine waters: humic material (> 10?6 mol l?1, assuming 1:1 site binding) with polyelectrolyte-type binding, and discrete ligands (? 10?6 M) with stability constants around 109. The extent of Cu(II) binding by the humic material decreases down the estuary because of dilution and increased salinity.  相似文献   

2.
A new Cu(II)-ion imprinted polymer (IIP) has been synthesized by copolymerizing salicylic acid and formaldehyde as a monomer and crosslinker, respectively in the presence of Cu(II)-4-(2-pyridylazo) resorcinol complex. The imprinted Cu(II) ions were completely removed by leaching the IIP with 0.05 M EDTA. The maximum adsorption capacity for Cu(II) ions was 310 μg g?1 at pH 6. The IIP was repeatedly used in adsorption–desorption experiments for seven times with recoveries ~95%. The relative selectivity factor (α r) values of Cu(II)/Zn(II), Cu(II)/Cd(II), Cu(II)/Ni(II) and Cu(II)/Co(II) are 3.17, 2.90, 2.47 and 3.37, respectively. The detection limit corresponding to three times the standard deviation of the blank was found to be 3.0 μg L?1. The developed IIP has also been tested for preconcentration and recovery of Cu(II) ions from water samples.  相似文献   

3.
Singh  Dhruv K.  Mishra  Shraddha 《Chromatographia》2009,70(11):1539-1545

A new Cu(II)-ion imprinted polymer (IIP) has been synthesized by copolymerizing salicylic acid and formaldehyde as a monomer and crosslinker, respectively in the presence of Cu(II)-4-(2-pyridylazo) resorcinol complex. The imprinted Cu(II) ions were completely removed by leaching the IIP with 0.05 M EDTA. The maximum adsorption capacity for Cu(II) ions was 310 μg g−1 at pH 6. The IIP was repeatedly used in adsorption–desorption experiments for seven times with recoveries ~95%. The relative selectivity factor (α r) values of Cu(II)/Zn(II), Cu(II)/Cd(II), Cu(II)/Ni(II) and Cu(II)/Co(II) are 3.17, 2.90, 2.47 and 3.37, respectively. The detection limit corresponding to three times the standard deviation of the blank was found to be 3.0 μg L−1. The developed IIP has also been tested for preconcentration and recovery of Cu(II) ions from water samples.

  相似文献   

4.
The use of a reagent containing copper (II), bicinchoninic acid (BCA) and tartrate buffered at pH 11.25 was studied voltammetrically, coulometrically, spectrophotometrically and chemically. The reagent exhibits three cathodic waves at rotating platinum disk and rotating glassy carbon electrodes. The two more-positive cathodic waves correspond to electrochemical reduction to copper (I)-bisbicinchoninate, Cu(BCA)23?. The third cathodic wave is caused by reduction to metallic copper. A reaction mechanism is proposed that shows the major chemical species in the solution and the electrochemical reaction products. Voltammetric and chemical studies indicate that the reagent should be used with care for protein assays because it is subject to multiple chemical interferences.  相似文献   

5.
A method for the rapid separation of copper(II) traces on metallic mercury is proposed. The separation is rendered possible by the reduction of Cu(II) to Cu(I) on mercury in the presence of iodide ions followed by the adsorption of the uncharged complex, Cu(I), on Hg0. After a minute of agitation, this adsorption is quantitative (90–100%) for initial concentrations of Cu(II) between 10?4 to 10?6 M and iodide cone, of 10?2 to 10?3 M at pH 3. The volumes of the aqueous solutions are of the order of 3–10 ml and those of the drops of mercury between 0.5–1 ml. The tests were made using the isotope 64Cu (T 1/2 = 12.8 h).  相似文献   

6.
The complexation of Cu(I) and Cu(II) by a series of 12-, 14- and 16-membered macrocyclic ligands 1–6 containing the N2S2 donor set has been studied potentiometrically, spectrophotometrically and voltammetrically. In the case of Cu(II), mononuclear complexes CuL2+ with stability constants of 1010–1015 are formed. In addition, partially hydrolyzed species Cu(L)OH+ are observed at pH > 10 for the 12-membered ligands. For Cu(I), beside the specis CuL+ with stabilities of 1012–1014, the unexpected formation of protonated species CuLH2+ was detected. In contrast to the well-known general trends in coordination chemistry, the stability of these protonated species increases relative to that of the complexes with the neutral ligand when the ring size and concomitantly the distance between neighbouring donor atoms is decreased. From the stability constants of the Cu(I)- and Cu(II)-complexes the redox potentials have been calculated and are compared to the values of E1/2 obtained by cyclic voltammetry. Despite the identical donor set the Cu(II)/Cu(I) redox potentials of the complexes are spanning a range of 340 mV or six orders of magnitude in relative stability, reflecting the importance of subtle differences in steric requirements.  相似文献   

7.
Equilibrium dialysis and atomic absorption analysis were used to obtain adsorption isotherms and determine the stoichiometric binding constants of Cu(II) and Cd(II) ions to DNA from Spirulina platensis in solutions. The stoichiometric constants of Cu(II) and Cd(II) ions with DNA from S. platensis in 3 mM NaCI are 15.56⋅104 and 14.40⋅104, respectively. Effect of ionic strength and DNA GC content on binding constants of Cu(II)- and Cd(II)-DNA complexes were studied out. It was showed that the binding constants of Cu(II)- and Cd(II)-DNA complexes decrease with increase of ionic strength. The empirical dependences of logK on the GC content has been derived for Cd(II)- and Cu(II)-DNA complexes.  相似文献   

8.
The adsorption of copper species on a positively charged hanging mercury drop electrode in complexing ligand/surfactant/chloride solution is discussed. Techniques used were differential pulse voltammetry of the copper in the adsorbed film, and potential-step reduction of adsorbed copper followed by different pulse anodic stripping voltammetry of Cu(Hg). The CuCl?2 species is shown to be the most important copper moiety adsorbed on the electrode and the adsorption is enhanced by organic films. This can be a critical pathway in the reduction of copper(II) in estuarine waters. The induced adsorption of copper in organic layers has biogeochemical implications associated with the nature of organic films and their influence on the Cu(II)/Cu(I) redox couple. There are also analytical applications, e.g., the compositional assay of organic monolayers by utilising Cu(II) and Cu(I) adsorption as electoractive probes and the determination of solution copper-organic binding.  相似文献   

9.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

10.
Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2′-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 μmol g−1 of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO3. The selectivity coefficients (SCu/Me) for Me = Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 μmol L−1 (3σ) and 0.003 μmol L−1 (6σ), respectively.  相似文献   

11.
A dimeric dichloro-bridged copper(II) complex [Cu2(pdon)2Cl4] · 2DMF (1) and two mononuclear copper(II) complexes [Cu(pdon)(DMSO)Cl2] · DMSO · H2O (2) and [Cu(pdon)3] · (ClO4)2 · 2.25CH3CN · 6H2O (3) (pdon = 1,10-phenanthroline-5,6-dione) have been synthesized and characterized. Variable-temperature magnetic susceptibility studies indicate the existence of weak anti-ferromagnetic coupling in the binuclear complex. The interaction of these complexes with CT-DNA (calf thymus DNA) has been studied using absorption and emission spectral methods. The apparent binding constants (K app) for 1, 2 and 3 are 5.20 × 105, 2.68 × 105 and 7.05 × 105 M?1, respectively, showing moderate intercalative binding modes. All of these complexes cleave plasmid DNA to nicked DNA in a sequential manner as the concentration or reaction time is increased. The cleavage mechanism between the complex and plasmid DNA is likely to involve singlet oxygen 1O2 and ?OH as reactive oxygen species.  相似文献   

12.
Three new transition metal tricyanomethanide complexes [Cu(dpyam)(tcm)2] ( 1 ), [Cu(dpyam)(tcm)(OAc)] ( 2 ) and Zn(dpyam)2(tcm)2 ( 3 ) were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each copper(II) atom is coordinated to three tcm anions and one dpyam molecule to form a square pyramide geometry. In 2 the coordination geometry around the central metal is also square pyramidal, and each copper atom is surrounded by two tcm anions, one dpyam ligand and one OAc. Both 1 and 2 display a µ1,5‐tcm bridged infinite chain structure. In 3 each zinc(II) atom is coordinated by two tcm anions and two dpyam molecules to form a distorted octahedral geometry. Different from the former two complexes, 3 shows a mononuclear structure. Magnetic susceptibility measurement in the range 2–300 K indicates that there are weak antiferromagnetic couplings between adjacent copper(II) ions in 1 (J=?0.03 cm?1) and 2 (J=?0.11 cm?1) respectively.  相似文献   

13.
Binary and ternary complexes of copper(II) involving N,N,N′,N′-tetramethylethylene-diamine (Me4en) and various biologically relevant ligands containing different functional groups are investigated. The ligands (L) used are dicarboxylic acids, amino acids, peptides and DNA unit constituents. The ternary complexes of amino acids, dicarboxylic acids or peptides are formed by simultaneous reactions. The results showed the formation of Cu(Me4en)(L) complexes with amino acids and dicarboxylic acids. The effect of chelate ring size of the dicarboxylic acid complexes on their stability constants was examined. Peptides form both Cu(Me4en)(L) complexes and the corresponding deprotonated amide species Cu(Me4en)(LH−1). The ternary complexes of copper(II) with (Me4en) and DNA are formed in a stepwise process, whereby binding of copper(II) to (Me4en) is followed by ligation of the DNA components. DNA constituents form both 1:1 and 1:2 complexes with Cu(Me4en)2+. The concentration distribution of the complexes in solution was evaluated. [Cu(Me4en)(CBDCA)] and [Cu(Me4en)(malonate)] are isolated and characterized by elemental analysis and infrared measurements.  相似文献   

14.
The system Cu(II)Cu(I)Cu(0) in acidified thiocyanate medium was investigated at carbon, mercury, and copper amalgam electrodes using cyclic voltammetry, normal, differential and reverse pulse voltammetry, double potential step chronocoulometry, and exhaustive coulometry. Reduction of Cu(II) to Cu(I) on carbon electrodes proceeds quasireversibly. At moderate concentrations of Cu(II) and SCN? the reduction of Cu(II) leads to three-dimensional precipitation of CuSCN which can be deposited at the electrode surface. At high concentration of SCN? complexation dominates over precipitation and only soluble species are formed. At mercury and copper amalgam electrodes the situation is more complicated. The three- dimensional precipitation is preceded by strong thiocyanate-induced adsorption of Cu(I) which results in formation of a mono layer at potential well-separated from those where diffusing product is formed.  相似文献   

15.
A potentiometric method was used to determine the stability constants for the various complexes of copper(II) with carbamoylcholine chloride (C) drug as a ligand in the presence of some biorelevant amino acid constituents like glycine (Gly), alanine (Ala), valine (Val), proline (Pro), β-phenylalanine (Phe), S-methylcysteine (Met), threonine (Thr), ornithine (Orn), lysine (Lys), histidine (Hisd), histamine (Hist), and imidazole (Imz) as ligands (L). Stability constants of complexes were determined at 25°C and I = 0.10 mol/L NaNO3. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of Δlog K and % R.S. values. Cu(II) complexes of drug C were synthesized in 1:1 and 1:1:1 M ratios of copper to drug [Cu(C)(NO3)2] (1) and copper to drug to glycine[Cu(C)(Gly)(NO3)].NO3 (2), respectively. Glycine ternary complex with drug and copper [Cu(C)(Gly)(NO3)].NO3 was considered as representative amino acid. The complexes 1 and 2 were isolated and characterized using various physicochemical and spectral techniques. Both complexes 1 and 2 were found to have magnetic moments corresponding to one unpaired electron. The possible square planar and square-pyramidal geometries of the copper (II) complexes were assigned on the basis of electron paramagnetic resonance (EPR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), ultraviolet–visible (UV–Vis) and infrared (IR) spectral studies, and the discrete Fourier transform method from DMOL3 calculations. Antioxidant activities of all the synthesized compounds were also investigated.  相似文献   

16.
The coordinatively unsaturated chromium(II)-based Cr3[(Cr4Cl)3(BTT)8]2 (Cr−BTT; BTT3−=1,3,5-benzenetristetrazolate) metal–organic framework (MOF) has been shown to exhibit exceptional selectivity towards adsorption of O2 over N2/H2. Using periodic density functional theory (DFT) calculations, we attempted to decipher the origin of this puzzling selectivity. By computing and analyzing the magnetic exchange coupling, binding energies, the partial density of states (pDOS), and adsorption isotherms for the pristine and gas-bound MOFs [(Cr4(X)4Cl)3(BTT)8]3− (X=O2, N2, and H2), we unequivocally established the role of spin states and spin coupling in controlling the gas selectivity. The computed geometries and gas adsorption isotherms are consistent with the earlier experiments. The binding of O2 to the MOF follows an electron-transfer mechanism resulting in a CrIII superoxo species (O2.−) with a very strong antiferromagnetic coupling between the two centers, whereas N2/H2 are found to weakly interact with the metal center and hence only slightly perturb the associated coupling constants. Although the gas-bound and unbound MOFs have an S=0 ground state (GS), the nature of spin the configurations and the associated magnetic exchanges are dramatically different. The binding energy and the number of oxygen molecules that can favorably bind to the Cr center were found to vary with respect to the spin state, with a significant energy margin (47.6 kJ mol−1). This study offers a hitherto unknown strategy of using spin state/spin couplings to control gas adsorption selectivity in MOFs.  相似文献   

17.
We develop a simple semiempirical model that correlates the Auger parameter to the ground state valence charge of the core-ionized atom with closed shell electron configuration. Until now, the Auger parameter was employed to separate initial and final state effects that influence the core electron binding energy. The model is applied to Cu(I) and Cu (II) compounds with the Auger parameter defined as α' = EbFL (2p3/2) + EkFL (L3M45M45;1G). The Auger parameter shift for Cu(I) ion in CuI, CuBr, CuFeS2, Cu2S, and Cu2O compounds—with respect to the copper free atom—increases with the electronic polarizability of the nearest-neighbour ligands suggesting a nonlocal screening mechanism. This relaxation process is interpreted as due to an electron transfer from the nearest-neighbour ligands toward the spatially extended 4sp valence orbitals of the core-ionized Cu(I) ion. In agreement with our model, a linear relationship is found between the Auger parameter shift and the ground state Bader valence charge obtained by density functional theory calculations. The Auger parameter shift for the Cu (II) ion in CuF2, CuCl2, CuBr2, CuSO4, Cu (NO3)2•3H2O, Cu3(PO4)2, Cu (OH)2, and CuO compounds is very close to the Auger parameter of metallic copper, and therefore, it is not related to the calculated ground state Bader valence charge. The relaxation process in the final state is dominated by the local screening mechanism, which involves an electron transfer from the nearest-neighbour ligands toward the spatially contracted 3d orbitals of the core-ionized Cu (II) ion.  相似文献   

18.
A novel ligand, N,N′‐Bis‐[3‐(2‐nitrophenyl)‐allylidene]‐ethane‐1,2‐diamine (nca2en), and their corresponding copper(I) complexes, [Cu(ncaen)2]ClO4 ( 1 ), and [Cu(nca2en)(PPh3)2]BPh4 ( 2 ), have been synthesized and characterized by CHN analyses, 1H and 13C‐NMR, IR, and UV‐Vis spectroscopy. The crystal and molecular structures of [Cu(ncaen)2]ClO4 ( 1 ), and [Cu(nca2en)(PPh3)2]BPh4 ( 2 ), were determined by X‐ray crystallography from single‐crystal data. The coordination polyhedron about the copper(I) atom in the two complexes is best described as a distorted tetrahedron. A quasireversible redox behavior is observed for complex 1 and 2 (E1/2 = 0.55 and 0.95 V, respectively).  相似文献   

19.
Crystal Structures of the Terpyridine Complexes [Cd(terpy)Cl2], [Cu(terpy)(CN)Cl], and [Cu(terpy)][Cu(CN)3] · H2O By reaction of cadmium chloride with 2,2′ : 6′,2″-terpyridine (“terpy”) in water/acetone crystals of [Cd(terpy)Cl2] ( 1) were formed. The compound crystallizes monoclinic, space group P21/c, a = 1111.70(10), b = 823.10(7), c = 1643.00(14) pm, β = 93.913(1)°, Z = 4. Starting from mixtures of different molar ratios of copper(II) chloride, terpyridine, and KCN in water/methanole, two complexes of different composition were obtained. At the molar ratio of 1 : 1 : 2 a copper(II) coordination compound with both halide and pseudohalide ligands, [Cu(terpy)(CN)Cl] ( 2 ), was formed which also crystallizes monoclinic, P21/c, a = 1065.6(3), b = 824.6(2), c = 1644.5(7) pm, β = 98.214(3)°, Z = 4. At a molar ratio of 1 : 1 : 10 a partial reduction of copper(II) occured with formation of a mixed valency compound [Cu(terpy)][Cu(CN)3] · H2O ( 3 ) which crystallizes in the hexagonal space group P6522, with a = b = 800.29(1), c = 4771.05(7) pm, Z = 6. Compounds 1 and 2 are structurally similar, the coordination of the metal atoms is square pyramidal. Networks are formed by hydrogen bridges. In 3 the copper(II) ions show a distorted square planar coordination by the three N atoms of the terpy ligand and one N atom of a bridging CN group, the copper(I) atoms, however, show trigonal planar coordination by three CN ligands to which the water molecules are bonded by hydrogen bridges. Thus helical chains are formed which stretch in the direction of the screw axes. The EPR spectrum of 3 was measured.  相似文献   

20.
A copper complex [Cu(IDB)Cl] · 0.5[CuCl4]?·?H2O (1) (IDB?=?di(2-benzimidazolylmethyl)imine) was synthesized and its structure was determined by X-ray single crystal diffraction. In this complex, the central copper(II) ion is four-coordinate, IDB serves as a neutral tridentate chelating ligand for the tetragonal copper ion. The cyclic voltammogram of complex 1 in CH3CN gave two reversible redox waves (E 1/2,1?=??0.14?V and E 1/2,2?=?0.08?V versus SCE) which correspond to the Cu(II,?II)/Cu(I,?II) and Cu(II,?II)/Cu(II,?I) redox processes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号