首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, different carbon nanomaterials were introduced for construction of electrochemical sensors. In this study, the influence of carbon nanomaterial on performance of carbon paste potentiometric electrode was investigated. In this manner, different kinds of carbon nanomaterial, i.e., graphene, graphene oxide and carbon nanotube (CNT) were used as a conduction phase in carbon paste electrode. Then, potentiometric characteristics of the corresponding paste electrodes such as calibration slope, linear range, detection limit, response time and stability were compared with each other. The results appeared comprehensive findings about the role of electrode’s content in electrochemical performance.  相似文献   

2.
《Electroanalysis》2017,29(7):1660-1669
Over the past few decades, the (bio)functionalization of carbon nanomaterials (CNMs), such as nanohorns, carbon nanotubes, graphene, graphite and related with a wide range of (bio)modifiers have been extensively studied for their incorporation on different pure metal or carbon electrode surfaces via drop‐casting. However, CNMs are also shown to be important functional additives for polymers, having great potential to produce rigid nanocomposite materials with a range of enhanced properties, including mechanical, optical, electrical, thermal and electrochemical. The high malleability derived from the host polymer allows alternative strategies that can be carried out in order to incorporate different types of (bio)modifiers in/on/into a polymeric nanocomposite electrode. Accordingly, this mini review overviews the main methodologies used for the bio‐functionalization of electrochemical transducers based on nanocomposite carbon paste electrodes (NC‐CPEs). Additionally, the most extensively (bio)modifiers used in electrochemical (bio)sensing, together with their various electrocatalytical performance are also discussed, fact that might serve as a general outlook for planning further research.  相似文献   

3.
Solid like carbon paste electrodes (SCPEs) are built using different carbon materials namely carbon black N110, N220, N375, N772 and acetylene black. The electrochemical behavior of these electrodes and the influence of carbon black/paraffin ratio were studied and the results were discussed and compared to other electrodes prepared with graphite, mesoporous carbon and nanopowder carbon. Cyclic voltammetry, amperometry and electrochemical impedance spectroscopy were employed for their electrochemical and analytical characterizations. Amperometric measurements using N110, N220, N375 SCPEs with solid paraffin, showed a linear response of benzoquinone concentration with a detection limit of 75, 32 and 171 nM respectively.  相似文献   

4.
In order to develop a renewable electrode surface, carbon nanofibers (CNF) were embedded into solidified paste electrodes using a composite of paraffin wax and paraffin oil. A range of different compositions was surveyed and the optimal composition of the paste for electroanalysis was found to be 43% of CNF, 41% of paraffin wax, and 16% of paraffin oil. The electrochemical properties of the novel composite electrode were investigated using cyclic voltammetry and electrochemical impedance spectroscopy and compared to those of similar graphite—solidified paste electrodes. The carbon nanofibers enhance the activity of the surface of the electrode and provide a good substrate for the adsorption and voltammetric detection of dsDNA. Responses of dsDNA bases and Ni2+ ions accumulated from ammonium buffer pH 8.5 (with a Langmuirian binding constant of 105 mol?1 L) were investigated and a limit of detection of 7 nmol L?1 (at 3σ) was obtained using “nucleation stripping voltammetry”. Interferences by other metal cations are examined and discussed.  相似文献   

5.
Surface renewable ordered mesoporous carbon paste electrodes (OMCPE) were prepared by mechanical mixing ordered mesoporous carbon (OMC) and mineral oil. Electrochemical behavior of the composite electrode was evaluated and compared with the conventional graphite paste (GPE) and carbon nanotubes paste (CNTPE) electrodes. The OMCPE provided improved electron transfer kinetics and catalytic capabilities in connection with oxidation and/or reduction of different redox systems, such as ferricyanide and some biological species, e. g. ascorbic acid (AA), uric acid (UA), β‐nicotinamide adenine dinucleotide (NADH), dopamine (DA), epinephrine (EP), acetaminophenol (AP) and hydrogen peroxide. The substantial decrease in the over voltage of the hydrogen peroxide oxidation along with the facile incorporation of glucose oxidase (GOD) into the composite matrix allowed us successfully to fabricate a sensitive and selective glucose biosensor. A linear response up to 15 mM glucose was obtained for the OMCPE modified with 10% GOD (w/w) with a detection limit of 0.072 mM. In addition, we also successfully applied the OMCPE to the anodic stripping voltammetric analysis of heavy metal ions with improved sensitivities in comparison with CNTPE and GPE. The excellent experimental results implicate that the new developed paste electrode holds great promise in the design of electrochemical devices, such as sensors and biosensors.  相似文献   

6.
MicroRNA (miRNA) is an important tumor marker in the human body, and its early detection has a great influence on the survival rate of patients. Although there are many detection methods for miRNA at present such as northern blotting, real-time quantitative polymerase chain reaction, microarrays, and others, electrochemical biosensors have the advantages of low detection cost, small instrument size, simple operation, non-invasive detection and low consumption of reagents and solvents, and thus they play an important role in the early detection of cancer. In addition, with the development of nanotechnology, nano-biosensors show great potential. The application of various nanomaterials in the development of electrochemical biosensor has greatly improved the detection sensitivity of electrochemical biosensor. Among them, carbon nanomaterials which have unique electrical, optical, physical and chemical properties have attracted increasing attention. In particular, they have a large surface area, good biocompatibility and conductivity. Therefore, carbon nanomaterials combined with electrochemical methods can be used to detect miRNA quickly, easily and sensitively. In this review, we systematically review recent applications of different carbon nanomaterials (carbon nanotubes, graphene and its derivatives, graphitic carbon nitride, carbon dots, graphene quantum dots and other carbon nanomaterials) for miRNA electrochemical detection. In addition, we demonstrate the future prospects of electrochemical biosensors modified by carbon nanomaterials for the detection of miRNAs, and some suggestions for their development in the near future.  相似文献   

7.
The difficulties in the use of carbon paste electrodes to quantify the electrochemical adsorption of hydrogen in nanocarbon materials are described. Chronoamperometry studies using a Ferro/Ferri redox couple were performed to obtain the electrochemical active area of paste electrodes prepared by dispersion of differing samples of carbon blacks (CB) within silicon oil. This electrochemical active area was combined with the BET-surface area of the carbon blacks, to obtain the mass of superficial carbon involved in the electrochemical processes. To assure equal conditions for comparison, the electronic conductivity of the paste was equivalent in all the samples. From our results it appears that cyclic voltammetry, combined with carbon paste electrodes and nitrogen adsorption isotherms, provides a simple and less expensive route for the qualitative evaluation of the electrochemical hydrogen uptake of novel carbon materials. Still, for quantitative measurements, some issues remain unsolved in highly structured carbons, where the lack of penetration of the bulky Ferro/Ferri redox couple in the micropores of the CB and the occurrence of solid-state diffusion cause the underestimation of the mass involved in hydrogen adsorption.  相似文献   

8.
Direct electrochemistry of dsDNA based on the enhancement effect of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) was achieved by using a carbon paste electrode modified with multiwalled carbon nanotubes (MWCNTs/CPE) as the basal electrode. The results indicated that the dsDNA molecules have been adsorbed quite strongly on the cationic surfactants’ film and very well developed peaks which were attributed to the oxidation of guanine residues on the dsDNA molecule structure were obtained from both electrodes. The electrochemical behavior of dsDNA at the surface of the modified electrodes was also evaluated. Based on the signal of guanine, under the optimal conditions, very low levels of dsDNA were detected following short accumulation times with detection limits of 0.650 mg L?1 and 0.119 mg L?1 for DTAB/MWCNTs/CPE and TTAB/MWCNTs/CPE, respectively.  相似文献   

9.
A selective and sensitive electrochemical enzyme-free sensor for dopamine (DA) was prepared, containing carbon nanomaterials, gold nanoparticles (GNPs) and room-temperature ionic liquid of 1-butyl-3-methylimidazolium tetrafluor (BmimBF4). The peaks of DA, ascorbic acid (AA) and uric acid (UA) can be well separated by optimization of pH condition and carbon nanomaterials.Multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), single-walled carbon nanohorns (SWCNHs), carboxylated graphene (C-GR), were chosen to compare the affection to DA detection. The catalytic effect was SWCNTs>MWCNTs>C-GR≈SWCNHs. It showed carbon nanotube materials with electron acceleration channels play the key role in catalytic performance. The pH condition also influenced detection, all the redox peak potentials of DA, UA, and AA had a negative shift as the pH changed from low to high, but the amplitude of the shift was different. At pH 1, the three anodic peaks are separated ca.0.24 V and 0.20 V. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 0.2 to 20 μM.The modified electrode was applied for the assay of spiked DA in blood serum and human urine.This work studied the influence of carbon nanomaterials on DA detection and provided a simple approach to selectively detect dopamine in the presence of AA and UA.  相似文献   

10.
Guo K  Qian K  Zhang S  Kong J  Yu C  Liu B 《Talanta》2011,85(2):1174-1179
Characterization and application of graphene sheets modified glassy carbon electrodes (graphene/GC) have been presented for the electrochemical bio-sensing. A probe molecule, potassium ferricyanide is employed to study the electrochemical response at the graphene/GC electrode, which shows better electron transfer than graphite modified (graphite/GC) and bare glassy carbon (GC) electrodes. Based on the highly enhanced electrochemical activity of NADH, alcohol dehydrogenase (ADH) is immobilized on the graphene modified electrode and displays a more desirable analytical performance in the detection of ethanol, compared with graphite/GC or GC based bio-electrodes. It also exhibits good performance of ethanol detection in the real samples. From the results of electrochemical investigation, graphene sheets with a favorable electrochemical activity could be an advanced carbon electrode materials for the design of electrochemical sensors and biosensors.  相似文献   

11.

Single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene have been tested as carbon allotropes for the modification of carbon screen-printed electrodes (CSPEs) to simultaneously determine melatonin (MT) and serotonin (5-HT). Two groups of CSPEs, both 4 mm in diameter, were explored: The first includes commercial SWCNT, MWCNT and graphene, the second includes SWCNT, MWCNT, graphene oxide nanoribbons and reduced nanoribbons that were drop casted on the electrodes. The carbon nanomaterials enhanced the electroactive area in the following order: CSPE

Carbon nanomaterials on screen-printed electrodes: smart electrochemistry for fast, simultaneous and reliable detection of serotonin the molecule of happiness and melatonin the molecule of darkness.

  相似文献   

12.
Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.  相似文献   

13.
Pencil graphite electrodes (PGEs) have several advantages over other carbon‐based or commercial metal electrodes, including widespread availability, very low cost, and ease of modification. To make the best use of PGEs in electroanalysis, significant recent advances in the development of different nanomaterial‐PGEs have been observed. The literature published up to mid‐2015 is summarized in the present review, with a focus on the various methodologies used to readily modify graphite pencil electrodes using nanomaterials. This review also touches on the surface characterization of these electrodes and their potential applications in a variety of electrochemical detection applications. The review outlines the scope for further research in this area and discusses the importance of surface modifications of conventional PGE electrodes using nanomaterials or a combination of nanomaterials and electroactive polymers.  相似文献   

14.
This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references.
Figure
This article reviews recent advances in the use of carbon nanomaterials (CNs) for the electroanalytical measurements of biogenic amines.  相似文献   

15.
The study of electrochemical behavior of amoxicillin (AMX), a β‐lactam antibiotic, is described on a multiwalled carbon nanotubes (MWCNTs) modified electrode by electrochemical impedance spectroscopy (EIS) and adsorptive stripping voltammetry for sensitive determination of AMX in pharmaceutical and human urine samples within a wide pH range from 2.0 to 10.0. Also, studies by Fe2O3 nanoparticles modified carbon paste electrode show that iron oxide impurities in the MWCNTs are not active sites for sensing of amoxicillin. Under optimized conditions, the oxidation peak has two linear dynamic ranges of 0.6–8.0 and 10.0–80.0 μM with a detection limit of 0.2 μM and a precision of <4%.  相似文献   

16.
《Electroanalysis》2017,29(3):756-764
Direct electro‐oxidation of famotidine at different graphitic carbon‐based electrode materials was evaluated. These materials included conventional electrodes of edge‐plane pyrolytic graphite, basal‐plane pyrolytic graphite, carbon paste, and glassy carbon as well as nano‐structured carbon‐based materials such as pyrolytic carbon film, carbon nanotube, and nano‐graphene. Raman spectroscopy and scanning electron microscopy were employed to analyze their structural and morphological features. It was found that the pyrolytic carbon film electrode, after a simple and fast anodic activation, shows superior electroanalytical performance. The method was successfully applied for the electroanalytical determination of famotidine in tablet dosage forms and urine samples.  相似文献   

17.
The present paper describes the carbon paste electrodes modified with parafin oil and oleic acid, and the electrochemical oxidation of cholesterol at these modified electrodes. A few years ago, an oleic acid modified carbon paste electrode was proposed and applied to the selective determination of estrogens. Basing on the similar considerations, we found that cholesterol has about the same structure as estrogens. The results of voltammetric measurement indicated that cholesterol at the modified carbon paste electrodes employing the oleic acid as the modifying reagent can yield a sensitive electrochemical response. A detection limit of 1.5×10-7mol/L cholesterol was estimated after a time of 4 min. by 1.5 order differential stripping analysis. The peak current is linearly proportional to the cholesterol concentration in the range of 3.O×10-5——5.0×10-7mol/L.  相似文献   

18.
Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors.  相似文献   

19.
A novel carbon paste ion selective electrode for determination of trace amount of lutetium was prepared. Modified (functionalized) multiwalled carbon nanotubes (f‐MWCNTs) were used for improvement of a lutetium carbon paste sensor response. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. In this work it is shown that introducing certain functional groups on MWCNTs can improve the electrode signals. The electrode composition of 20 % paraffin oil, 56 % graphite powder, 18 % ionophore and 6 % f‐MWCNTs showed the stable potential response to Lu3+ ions with the Nernstian slope of 21.1 (±0.3) mV decade?1 over a wide linear concentration range of 1.0×10?6–1.0×10?1 mol L?1. The electrode has fast response time (<15 s) and long term stability (about one month).  相似文献   

20.
《Electroanalysis》2017,29(2):548-558
In this work, graphene and multi‐walled carbon nanotubes were derivatised with anthraquinone (AQ) groups using spontaneous or electrochemical grafting of Fast Red AL salt. Glassy carbon (GC) electrodes were coated with AQ‐modified carbon nanomaterials to study the oxygen reduction reaction (ORR). These nanomaterials were characterised by X‐ray photoelectron spectroscopy and multilayer formation of AQ on the electrografted electrodes was observed. All the modified electrodes showed enhanced electrocatalytic activity towards the ORR in alkaline media. High AQ loading on the electrodes was found and the number of electrons transferred per O2 molecule was between 2 and 4. In addition, the stability testing of AQ‐derivatised carbon nanomaterial‐coated GC electrodes was performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号