首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

2.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

3.
Eight novel palladium N‐heterocyclic carbene (Pd‐NHC) complexes were synthesized by the reaction of chloro 1,3‐dialkylbenzimidazolin‐2‐ylidene silver(I) complexes with bis(benzonitrile)palladium(II) chloride in dichloromethane. These eight Pd‐NHC complexes are as follows: bis[1‐phenyl‐3‐(2,4,6‐trimethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,4,5,6‐pentamethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(3,4,5‐trimethoxybenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(3‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐morpholinoethyl)‐3‐naphthalenomethylbenzimidazol‐2‐ylidene]dichloropalladium(II) and bis[1‐(2‐morpholinoethyl)‐3‐(2‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II). Also, these synthesized complexes were fully characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopic methods and elemental analysis techniques. These synthesized novel Pd‐NHC complexes were tested as catalysts in the direct arylation of 2‐n‐butylthiophene, 2‐n‐butylfuran and 2‐isopropylthiazole with various aryl bromides at 130°C for 1 h. The complexes showed very good catalytic activities in these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Herein we report, a series of new benzimidazolium chlorides as N-heterocyclic carbene (NHC) ligand and their corresponding palladium(II)-NHC complexes with the general formula [PdCl2(NHC)2] were synthesized. All new compounds were characterized by 1H NMR, 13C NMR, IR spectroscopy and elemental analysis techniques. The catalytic activity of palladium(II)-NHC complexes was investigated in the direct C2- or C5-arylation of thiazoles with aryl bromides in presence of palladium(II)-NHC at 150?°C for 1?h. These complexes exhibited the good catalytic performance for the direct arylation of thiazoles. The arylation of thiazoles regioselectively produced C2- or C5-arylated thiazoles in moderate to high yields.  相似文献   

5.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

7.
Novel acyclic Pd(II)‐N‐heterocyclic carbene (NHC) metallacrown ethers 5a , 5b have been synthesized. Reaction of the imidazolium salts bearing a long polyether chain with Ag2O afforded Ag‐NHC complexes, which then reacted as carbene transfer agent with PdCl2(MeCN)2 to give the desired acyclic Pd(II)‐NHC metallacrown ether complexes 5a and 5b . The 1H NMR and 13C NMR spectra show 5a and 5b exist as mixtures of cis and trans isomers in solution. The trans isomer of 5a was characterized by X‐ray diffraction, which clearly demonstrated two pseudo‐crown ether cavities in trans‐ 5a . Pd(II)‐NHC complexes 5a and 5b have been shown to be highly effective in the Suzuki‐Miyaura reactions of a variety of aryl bromides in neat water without the need of inert gas protection.  相似文献   

8.
The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] ( 4 ) [IMes = 1,3‐bis(mesityl)imidazol‐2‐ylidene] and [PdCl(ppy){(CN)2IMes}] ( 6 ) [(CN)2IMes = 4,5‐dicyano‐1,3‐bis(mesityl)imidazol‐2‐ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2‐phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)]2. Suitable crystals for the X‐ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC‐palladium bond than the IMes complex 4 . The difference of the palladium carbene bond lengths based on the higher π‐acceptor strength of (CN)2IMes in comparison to IMes. Thus, (CN)2IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the π‐acceptor strength of (CN)2IMes compared to IMes, the selone (CN)2IMes · Se ( 7 ) was prepared and characterized by 77Se‐NMR spectroscopy. The π‐acceptor strength of 7 was illuminated by the shift of its 77Se‐NMR signal. The 77Se‐NMR signal of 7 was shifted to much higher frequencies than the 77Se‐NMR signal of IMes · Se. Catalytic experiments using the Mizoroki‐Heck reaction of aryl chlorides with n‐butyl acrylate showed that 6 is the superior performer in comparison to 4 . Using complex 6 , an extensive substrate screening of 26 different aryl bromides with n‐butyl acrylate was performed. Complex 6 is a suitable precatalyst for para‐substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles.  相似文献   

9.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

10.
Palladium(II) complexes containing phosphorus and nitrogen donor atoms (iminophosphine), dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐2‐trifluoromethylaniline}palladium(II) 1 , dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐3‐trifluoromethylaniline}palladium(II) 2 , dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐2‐methylaniline}palladium(II) 3 , dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐3‐methylaniline}palladium(II) 4 have been successfully synthesized and fully characterized by FT‐IR and NMR (1H, 31P, 19F, and 13C) spectroscopy techniques. These complexes were first step tested in the reaction of bromobenzene and styrene to determine the optimal coupling reaction conditions and then successfully applied as catalysts for Heck cross‐coupling reactions of activated and deactivated aryl bromides with styrene derivatives and several acrylates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A series of novel benzimidazolium bromides containing bulky 3,5‐di‐tert ‐butyl group were synthesized in high yields as N‐heterocyclic carbene (NHC) ligands. These NHC ligands were metallated with Ag2O under moderate conditions to give novel silver–NHC complexes. The structures of all compounds were characterized using 1H NMR, 13CNMR, infrared and elemental analysis techniques, which supported the proposed structures. The silver–NHC complexes were screened for their in vitro antimicrobial activities against the standard bacterial strains Enterococcus faecalis , Staphylococcus aureus , Escherichia coli and Pseudomonas aeruginosa and the fungal strains Candida albicans and C. tropicalis . The results showed that most of the silver–NHC complexes inhibited the growth of all bacterial strains and fungal strains and were found to display effective antimicrobial activity against different microorganisms.  相似文献   

12.
A series of imidazolium chlorides for the formation of tridentate CNO‐donor palladium(II) complexes featuring N‐heterocyclic carbene moieties have been developed from cheap and readily available starting materials with high yields. Their palladium complexes were prepared by reactions between the ligand precursors and PdCl2 using K2CO3 as base in pyridine with reasonable yields. These air‐stable metal complexes were characterized using 1H NMR and 13C{1H} NMR spectroscopy and elemental analyses. Heteronuclear multiple bond correlation experiments were performed to identify key NMR signals of these compounds. The structures of two of the complexes were also established by single‐crystal X‐ray diffraction analysis. One of these complexes was successfully applied in the direct C―H functionalization reactions between heterocyclic compounds and aryl bromides, producing excellent yields of coupled products. The coupling reactions were scalable, allowing grams of coupled products to be obtained with a mere 2 mol% of Pd loading. The catalyst system developed allowed the large‐scale preparation of several push–pull chromophores straightforwardly. Photophysical properties based on UV–visible and fluorescence spectroscopy for these chromophores were investigated. Deep blue photoluminescence with moderate quantum efficiency and twisted intramolecular charge transfer excited state were observed for these chromophores. Density functional theory (DFT) and time‐dependent DFT calculations were performed to support the experimental results.  相似文献   

13.
Novel ruthenium‐1,3‐dialkylimidazolin‐2‐ylidene complexes ( 2a–e ) have been prepared and characterized by C, H, N analysis, 1H‐NMR and 13C‐NMR. The ortho position of the aromatic ring of pyridyl group substituted aromatic compound was directly arylated with aryl bromides and chlorides in the presence of a catalytic amount of [RuCl2(1,3‐dialkylimidazolin‐2‐ylidene)] complexes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Novel palladium‐1,3‐dialkylperhydrobenzimidazolin‐2‐ylidene (2a–c) and palladium‐1,3‐dialkylimidazolin‐2‐ylidene complexes (4a,b) have been prepared and characterized by C, H, N analysis, 1H‐NMR and 13C‐NMR. Styrene or phenylboronic acid reacts with aryl halide derivatives in the presence of catalytic amounts of the new palladium‐carbene complexes, PdCl2(1,3‐dialkylperhydrobenzimidazolin‐2‐ylidene) or PdCl2(1,3‐dialkylimidazolin‐2‐ylidene) to give the corresponding C? C coupling products in good yields. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Two Pd(II)–NHC complexes bearing benzimidazole and pyridine groups have been successfully prepared and fully characterized by NMR and X‐ray diffraction analysis. The structure of palladium complexes are a typical square‐planar with palladium surrounded by two pairs of trans‐arranged benzimidazole and carbene ligands. The Pd–NHC complexes have been proved to be a highly efficient catalyst for the Mizoroki–Heck coupling reaction of aryl halides with various substituted acrylates under mild conditions in excellent yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The important therapeutic properties of imidazole‐related drugs have encouraged the medicinal chemists to synthesize and test a large number of novel molecules. In this investigation, it was of interest to synthesize (2‐alkyl/aryl‐3H‐imidazo[2,1‐c][1,2,4]triazol‐3‐yl)(aryl)methanone by short reaction times of N‐triazol‐3‐yl imidate with phenacyl bromides under basic conditions. All compounds were elucidated by spectroscopic methods including IR, 1H‐NMR, 13C‐NMR, elemental analyses, and mass spectral analysis.  相似文献   

17.
A novel series of N-heterocyclic carbene-phosphine palladium(II) complexes has been synthesized and fully characterized by IR, 1H NMR, 13C NMR, and 31P NMR spectroscopies, and elemental analysis. The new N-heterocyclic carbene (NHC)-phosphine palladium(II) complexes 3a–h have been easily prepared by the reaction of the corresponding PEPPSI (pyridine-enhanced precatalyst preparation stabilization and initiation) complexes 2a–h and triphenylphosphine in dichloromethane in high yields. These complexes were applied as catalyst precursors which efficiently catalyzed Sonogashira reactions between aryl bromides and phenylacetylene to afford the corresponding products in good yields. The bulky NHC-Pd-PPh3 complexes 3 were tested against Gram-positive and Gram-negative bacteria to study their biological activity. All the complexes exhibit antibacterial against these organisms. Investigation of the anti-acetylcholinesterase activity of the studied complexes showed that compounds 3a and 3b exhibited moderate activity at 100 μg mL?1 and product 3b is the most active.  相似文献   

18.
Enantioselective functionalizations of unbiased methylene C(sp3)?H bonds of linear systems by metal insertion are intrinsically challenging and remain a largely unsolved problem. Herein, we report a palladium(II)‐catalyzed enantioselective arylation of unbiased methylene β‐C(sp3)?H bonds enabled by the combination of a strongly coordinating bidentate PIP auxiliary with a monodentate chiral phosphoric acid (CPA). The synergistic effect between the PIP auxiliary and the non‐C2‐symmetric CPA is crucial for effective stereocontrol. A broad range of aliphatic carboxylic acids and aryl bromides can be used, providing β‐arylated aliphatic carboxylic acid derivatives in high yields (up to 96 %) with good enantioselectivities (up to 95:5 e.r.). Notably, this reaction also represents the first palladium(II)‐catalyzed enantioselective C?H activation with less reactive and cost‐effective aryl bromides as the arylating reagents. Mechanistic studies suggest that a single CPA is involved in the stereodetermining C?H palladation step.  相似文献   

19.
The oxidative interception of various σ‐alkyl palladium(II) intermediates with additional reagents for the difunctionalization of alkenes is an important research area. A new palladium‐catalyzed oxidative difunctionalization reaction of alkenes with α‐carbonyl alkyl bromides is described, in which the σ‐alkyl palladium(II) intermediate is generated through a Heck insertion and trapped using an aryl C(sp2)? H bond. This method can be applied to various α‐carbonyl alkyl bromides, including primary, secondary, and tertiary α‐bromoalkyl esters, ketones, and amides.  相似文献   

20.
A series of unsymmetrical 1,3-disubstituted benzimidazolium chlorides were synthesized as N-heterocyclic carbene (NHC) precursors. These compounds were used to synthesize of the PEPPSI-type palladium NHC complexes. The structures of all compounds were characterized by 1H NMR, 13C NMR, FT-IR spectroscopy and elemental analyses. The catalytic activity of the PEPPSI-type palladium–NHC complexes has been evaluated with respect to the Suzuki-Miyaura cross-coupling reactions of phenyl boronic acid with various aryl halides in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号