首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1 , 2 equiv of amines 2 , and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.  相似文献   

2.
Fe3O4 nanoparticles were coated with aminopropyltriethoxysilane and subsequently reacted with isatin to obtain imine‐bonded Fe3O4 nanoparticles. The addition of ZrOCl2?8H2O or CuCl2 led to the formation of complexes of Zr(IV)/isatin@Fe3O4 or Cu (II)/isatin@Fe3O4 as new magnetically separable catalysts. The synthesized catalysts were characterized using various techniques. These catalysts are shown to be efficient for chemo‐selective oxidation of sulfides to sulfoxides using hydrogen peroxide as oxidative agent. This system has many advantages, such as excellent level of reusability of magnetic catalysts, high yields, simplicity of separation of catalysts using an external magnet, environmental benignity and ease of handling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A novel magnetic composite catalyst has been prepared by immobilizing a chiral diamine on core/shell Fe3O4/ZnO. This new catalyst was characterized using X‐ray diffraction, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and vibrating sample magnetometry. The performance of the catalyst was investigated in the asymmetric Kinugasa reaction and confirmed to be efficient in the synthesis of β‐lactam derivatives under mild conditions.  相似文献   

4.
A novel super acidic magnetic nanoparticle as catalyst was successfully synthesized. The preparation of this dendrimer sulfonic acid functionalized γ‐Fe2O3 magnetic core‐shell silica nanoparticles as a new recoverable and heterogeneous nanocatalyst was described. The new catalyst was characterized using various techniques such as scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and thermo gravimetric synthesis (TGA). Moreover, we have examined the catalytic activity of the catalyst for one‐pot, efficient and facile synthesis of 2‐hydroxy‐1,4‐naphthoquinone derivatives via a three‐component condensation reaction of 2‐hydroxynaphthalene‐1,4‐dione, aromatic aldehydes and aniline derivatives. High yields of products, short reaction times, waste‐free, mild, ambient and solvent‐free reaction conditions are advantages of this protocol. Also, the catalyst can be easily recovered by an external magnetic and reused several times without significant loss of its catalytic activity.  相似文献   

5.
A novel nanomagnetic basic catalyst of caesium carbonate supported on hydroxyapatite‐coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3) was prepared. This new catalyst was fully characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, X‐ray diffraction and vibrating sample magnetometry techniques, and then the catalytic activity of this catalyst was investigated in the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives. Also, Ni0.5Zn0.5Fe2O4@HAP‐Cs2CO3 could be reused at least five times without significant loss of activity and could be recovered easily by applying an external magnet. Thus, the developed nanomagnetic catalyst is potentially useful for the green and economic production of organic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A heterogeneous and recyclable catalyst with a high loading of silver nanoparticles was synthesized via the silver nanoparticles being supported onto the surface of magnetic nanoparticles coated with poly(4‐vinylpyridine). The synthesized catalyst was used in the dehydrogenation of alcohols to corresponding carbonyl compounds. A broad diversity of alcohols was converted into their corresponding carbonyl compounds in excellent yields. The catalyst was easily recovered by applying an external magnetic field and reused for seven reaction cycles without considerable loss of activity. The catalyst was fully characterized using various techniques.  相似文献   

7.
Cu(II)–Schiff base complex‐functionalized magnetic Fe3O4 nanoparticles were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy techniques. This compound acts as a highly active and selective catalyst for the oxidation of sulfides and thiols. These reactions can be carried out in ethanol or solvent‐free conditions in the presence of hydrogen peroxide with complete selectivity and very high conversion under mild reaction conditions. The designed catalytic system prevents effectively the over‐oxidation of sulfides to sulfones. Separation and recycling can also be easily done using a simple magnetic separation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this research, a solvent‐free four‐component one‐pot reaction of phenyl isothiocyanate, phenylacetylene, various kinds of aldehydes, and amines was interpreted to obtain the desired five‐membered heterocycles named thiazolidin‐2‐imines. The promotor of this transformation is a novel magnetite‐based multilayered inorganic–bioorganic nanohybrid prepared via embedding glutamic acid on the magnetized silica followed by anchoring Cu (II) [nano Fe3O4‐SiO2@Glu‐Cu (II)]. The newly synthesized nanostructure is characterized through Fourier‐transform infrared (FT‐IR), field‐emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDAX), transmission electron microscopy (TEM), X‐ray fluorescence (XRF), thermogravimetric analysis or derivative thermogravimetric (TGA/DTG), vibrating sample magnetometer (VSM), X‐ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) techniques. This protocol is a straightforward one‐step procedure to obtain thiazolidin‐2‐imines without requirement to propargylamines or imines as substrates. In addition, easy work‐up procedure, high yields of products, absence of organic solvents in the reaction media, recovery and reusability of nano Fe3O4‐SiO2@Glu‐Cu ( II) to promote the reaction at least for three runs without activity lost, simple separation of the catalyst from reaction mixture via an external magnet, and regioselectivity of the method are some highlighted aspects of the approach.  相似文献   

9.
We have found that fibrous nanosilica (KCC‐1) can used as a excellent support for the synthesis of highly sparse nanoparticles and has high surface area that was functionalized with Tetrathia‐azacyclopentadecane (TTACP) groups acting as the strong performers so that the Ag nanoparticles were well‐dispersed without aggregation on the fibers of the KCC‐1 microspheres (KCC‐1/TTACP/Ag). We enthusiasm to report one‐pot synthesis of 3‐Acyloxylindolines for first time from N‐tosyl‐2‐vinylaniline, and benzoic acid in the presence of KCC‐1/TTACP/Ag as a catalyst.  相似文献   

10.
The preparation of Ni@Pd core–shell nanoparticles immobilized on yolk–shell Fe3O4@polyaniline composites is reported. Fe3O4 nanoclusters were first synthesized through the solvothermal method and then the SiO2 shell was coated on the Fe3O4 surface via a sol–gel process. To prepare Fe3O4@SiO2@polyaniline composites, polyvinylpyrrolidone was first grafted on to the surface of Fe3O4@SiO2 composites and subsequently polymerization of aniline was carried out via an ultrasound‐assisted in situ surface polymerization method. Selective etching of the middle SiO2 layer was then accomplished to obtain the yolk–shell Fe3O4@polyaniline composites. The approach uses polyaniline (PANI) conductive polymer as a template for the synthesis of Ni@Pd core–shell nanoparticles. The catalytic activity of the synthesized yolk–shell Fe3O4@PANI/Ni@Pd composite was investigated in the reduction of o‐nitroaniline to benzenediamine by NaBH4, which exhibited conversion of 99% in 3 min with a very low content of the catalyst. Transmission electron microscopy, X‐ray photoelectron spectroscopy, TGA, X‐ray diffraction, UV–visible, scanning electron microscopy, X‐ray energy dispersion spectroscopy and FT‐IR were employed to characterize the synthesized nanocatalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a mild and green protocol has been developed for the synthesis of quinazoline derivatives. The catalytic activity of 7‐aminonaphthalene‐1,3‐disulfonic acid‐functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2@Propyl–ANDSA) was investigated in the one‐pot synthesis of new derivatives of tetrahydrotetrazolo[1,5‐a]quinazolines and tetrahydrobenzo[h]tetrazolo[5,1‐b]quinazolines from the reaction of aldehydes, 5‐aminotetrazole, and dimedone or 6‐methoxy‐3,4‐dihyronaphtalen‐1(2H)‐one at 100 °C in H2O/EtOH as the solvent. The catalyst was characterized before and after the organic reaction. Fe3O4@SiO2@Propyl–ANDSA showed remarkable advantages in comparison with previous methods. Advantages of the method presented here include easy purification, reusability of the catalyst, green and mild procedure, and synthesis of new derivatives in high yields within short reaction time.  相似文献   

12.
In this research, Fe3O4@CeO2 (FC) was synthesized using the coprecipitation method and functionalized by an ammonium sulfate solution to achieve a heterogeneous solid acid Fe3O4@CeO2/SO42? (FCA) catalyst. The synthesized bifunctional catalyst was used in the protection process of alcohols and phenols using hexamethyldisilazane (HMDS) at ambient temperature under solvent‐free conditions. Due to its excellent magnetic properties, FCA can easily be separated from the reaction mixture and reused several times without significant loss in its catalytic activity. Excellent yield and selectivity, simple separation, low cost, and high recyclability of the nanocatalyst are outstanding advantages of this procedure. The characterization was carried out using different techniques such as Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD), and vibrating sample magnetometry (VSM).  相似文献   

13.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

14.
Carboxylic acid capped γ‐Fe2O3 nanoparticles were prepared by the standard decomposition of Fe(CO)5 in di‐n‐octyl ether and oleic acid. Two methods were employed to introduce surface functionality to the nanoparticles. First, a thermally stable, tert‐butyldiphenylsilyl‐protected hydroxyl group was incorporated into the carboxylic acid surfactant used during the synthesis. Subsequent deprotection and transformation installed a 2‐bromopropionyl ester group on the particle surface (the functional‐group‐interchange method). The resulting nanoparticles were 4.53 nm in average diameter and were characterized with IR spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction, and elemental analysis. Second, a 2‐bromopropionyl ester group was installed on the particle surface after synthesis via the exchange of the surface oleic acid with a carboxylic acid containing the desired 2‐bromopropionyl ester unit (the ligand‐exchange method). The resulting nanoparticles were 4.30 nm in average diameter and were characterized with IR spectroscopy, TEM, and elemental analysis. Monitoring the percentage of bromine incorporated into the nanoparticle sample versus the ligand‐exchange reaction time indicated that the number of initiator‐containing carboxylic acids that could be exchanged onto the surface was limited, presumably by the steric size of the 2‐bromopropionyl ester group. Styrene was then polymerized directly off γ‐Fe2O3 nanoparticles, and this yielded hybrid core–shell structures. The measurements of the magnetic properties of the samples demonstrated that the magnetism of the core γ‐Fe2O3 nanoparticle did not change during the performance of the chemical transformations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3675–3688, 2005  相似文献   

15.
A new, green and reusable nanomagnetic heterogeneous catalyst, namely Fe3O4@TiO2@O2PO2(CH2)NHSO3H, was synthesized and fully characterized using suitable techniques such as infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, thermogravimetry, vibrating sample magnetometry and energy‐dispersive X‐ray spectroscopy. The applicability of the constructed heterogeneous core–shell catalyst as a promoter was successfully explored for the synthesis of 2‐amino‐4,6‐diphenylnicotinonitrile derivatives upon the reaction of a good range of aromatic aldehydes, acetophenone derivatives, malononitrile and ammonium acetate. The desired products were obtained with good to high yields in short reaction times under solvent‐free conditions. The suggested mechanism offers an anomeric‐based oxidation route to the products in the final step of the synthetic pathway.  相似文献   

16.
In this paper, a simple route for palladium (Pd) nanoparticles attached to the surface of hollow magnetic Fe3O4/P (GMA‐DVB)‐polyethyleneimine (PEI) microspheres was established. Due to the large amount of imidogen groups and tertiary amine groups presenting in the PEI, Pd2+ ions could be anchored to the support by complexation with a polyfunctional organic ligand. Thereafter, a magnetic Pd catalyst having a high loading amount and good dispersibility was obtained by reducing Pd2+ ions. Afterwards, the prepared catalyst was characterized by TEM, SEM, FTIR, XRD, TGA, VSM, and UV–vis in detail. Ultimately, their catalytic activity was evaluated using the reduction of 4‐nitrophenol (4‐NP). Research showed that the Fe3O4/P (GMA‐DVB)‐PEI/Pd catalyst possessed high catalytic performances for the reduction of 4‐NP with a conversion rate of 98.43% within 540 s. Furthermore, the catalyst could be easily recovered and reused at least for nine successive cycles.  相似文献   

17.
An efficient and facile method was used for the synthesis of sodium polyaspartate‐functionalized silica‐coated magnetite nanoparticles. The structure of this nanoparticle was characterized by scanning electron microscopies, X‐ray diffraction, energy‐dispersive X‐ray, Fourier transform infrared spectroscopies and vibrating sample magnetometry. Then, this compound was used as a reusable heterogeneous catalyst for green synthesis of 2‐amino‐4H‐chromene derivatives via one‐pot three‐component reactions. This novel material showed great catalytic performance and the reactions which were carried out by this catalyst showed good to excellent yields. Besides, the catalyst could easily be separated from the reaction mixture by using an external magnetic field and it was stable enough to reuse several times without any significant reduction in the yield of reactions. Eco‐friendliness, high purity of the desired products, short reaction time and easy workup procedure can be mentioned as the other advantages of this method.  相似文献   

18.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

19.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

20.
A novel hydrophobic copper complex supported on γ‐Fe2O3 is synthesized and characterized by different methods such as FT‐IR, XRD, TEM, SEM, TGA, VSM, ICP and CHN analysis. It was used as a magnetically recyclable heterogeneous catalyst for the efficient synthesis of α‐aminophosphonates via a one‐pot three‐component reaction under solvent‐free conditions. The present catalytic system worked extremely well for the synthesis of α‐aminophosphonates even up to five subsequent trails without significant loss of its catalytic activity or copper leaching. The TEM image and FT‐IR spectrum of the catalyst after five times recovery showed that the structure of the catalyst was stable under the reaction conditions with no change being observed. The strong magnetic properties of the reused catalyst were revealed by complete and easy attraction using an external magnet and also by VSM curve. This work represents the first and unique example of a hydrophobic copper complex for catalysis in water generating reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号