首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new, rapid, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous quantification of tenofovir and lamivudine in human plasma using abacavir as an internal standard. An API‐4000 LC‐MS/MS with electrospray ionization was operated in multiple‐reaction monitoring mode for the analysis. The analytes were extracted from plasma by solid‐phase extraction technique using an Oasis HLB cartridge. The reconstituted samples were chromatographed on a Chromolith ROD speed C18 column using a mixture of 0.1% formic acid in water and acetonitrile (90:10 v/v) at a flow‐rate of 1 mL/min. The method was validated as per the FDA guidelines. The calibration curves were found to be linear in the range of 5–600 ng/mL for tenofovir and 25– 4000 ng/mL for lamivudine. The intra‐ and inter‐day precision and accuracy results were well within the acceptable limits. A run time of 2.8 min consumed for each sample made it possible to analyze more samples per day. The proposed assay method was found to be applicable to a pharmacokinetic study in human male volunteers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A bioanalytical method for the quantification of tacrolimus (TAC) on dried blood spots (DBS) using liquid chromatography, electrospray ionization coupled with tandem mass spectrometry (LC‐ESI‐MS/MS) was developed and validated. It involves solvent extraction of a punch disk of DBS followed by liquid–liquid extraction. The analyte and the internal standard (IS, ascomycin) were separated on a phenyl column using an isocratic mobile phase elution at a flow rate of 0.3 mL/min. The assay was linear from 1 to 80 ng/mL. The mean recovery of TAC was 76.6%. Intra‐assay, inter‐assay imprecision and biases were all less than 15%. TAC on DBS was stable for at least 10 days at room temperature, and at least 24 h at 50°C. A chromatographic effect of the filter paper (Whatman 903) was not detected. The volume of blood (15–50 μL) and hematocrit of blood (ranging from 23.2 to 48.6%) did not show a significant influence on detection of TAC concentration by DBS‐LC‐MS/MS. Fifty samples from patients were detected by both DBS‐LC‐MS/MS and microparticle enzyme‐linked immunoassay (MEIA). TAC concentrations measured by DBS‐LC‐MS/MS method tended to be lower than those by MEIA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, simple, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous estimation of atorvastatin (ATO), amlodipine (AML), ramipril (RAM) and benazepril (BEN) using nevirapine as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Analytes and IS were extracted from plasma by simple liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on C18 column by pumping 0.1% formic acid–acetonitrile (15:85, v/v) at a flow rate of 1 mL/min. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 0.26–210 ng/mL for ATO; 0.05–20.5 ng/mL for AML; 0.25–208 ng/mL for RAM and 0.74–607 ng/mL for BEN with mean correlation coefficient of ≥0.99 for each analyte. The intra‐day and inter‐day precision and accuracy results were well with in the acceptable limits. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The developed assay method was successfully applied to a pharmacokinetic study in human male volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this research, we developed and validated a liquid chromatography coupled to mass spectrometry (LC–QToF–MS) method for simultaneous quantification of the anti-tuberculosis drugs ethambutol, isoniazid, pyrazinamide and rifampicin in human plasma. Plasma samples spiked with cimetidine (internal standard) were extracted using protein precipitation with acetonitrile containing 1% formic acid. Separation was performed using a C18 column under flow gradient conditions with water and acetonitrile, both containing 5 mm ammonium formate and 0.1% formic acid. The method was validated according to the ANVISA and US Food and Drug Administration guidelines for bioanalytical method validation. The calibration curve was linear over a concentration range of 0.2–5 μg ml−1 for ethambutol, 0.2–7.5 μg ml−1 for isoniazid, 1–40 μg ml−1 for pyrazinamide and 0.25–2 μg ml−1 for rifampicin, all with adequate precision and accuracy. The method was reproducible, selective and free of carryover and matrix effects. The validated LC–QToF–MS method was successfully applied to real samples and shown to be applicable to future therapeutic and pharmacokinetic monitoring studies.  相似文献   

6.
A highly sensitive, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lamotrigine (LAM) with 100 μL of human plasma using flucanozole as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using electrospray ionization. A simple liquid–liquid extraction process was used to extract LAM and IS from human plasma. The total run time was 2.0 min and the elution of LAM and IS occurred at 1.25 and 1.45 min; this was achieved with a mobile phase consisting of 0.1% formic acid–methanol (20:40:40, v/v) at a flow rate of 0.50 mL/min on a Discovery CN (50 × 4.6 mm, 5 µm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.1 ng/mL for LAM. A linear response function was established for the range of concentrations 0.1–1500 ng/mL (r > 0.998) for LAM. The intra‐ and inter‐day precision values for LAM met the acceptance as per Food and Drug Administration guidelines. LAM was stable in the set of stability studies, viz. bench‐top, autosampler and freeze–thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Buparlisib is a selective phosphoinositide 3 kinase inhibitor currently evaluated in clinical trials. We developed and validated an LC–MS/MS coupled with a one-step protein precipitation extraction method for the quantitation of buparlisib in rat plasma. After protein precipitation with acetonitrile, the plasma sample was analyzed using a Cortecs UPLC C18 column, with acetonitrile–0.1% formic acid as the mobile phase system. Mass spectrometric detection was conducted in positive ionization mode, with target quantitative ion pair of m/z 411.2 → 367.2 for buparlisib. The calibration curve showed good linearity (1.0–3000 ng/ml), with acceptable accuracy (RE ranging from −6.2 to 5.9%) and precision (RSD within 8.2%) values at quality control concentrations. Extraction recovery from plasma was 80.9–88.7% and the matrix effect was negligible (92.6–95.2%). The validated method presented a simple quantification method of buparlisib in detail and utilized it for a pharmacokinetic study at three dose concentrations after oral administration in Wistar rats.  相似文献   

8.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A specific, sensitive and accurate analytical LC‐MS/MS assay was developed for the simultaneous determination of two steroidal glycosides, tenacissoside H and tenacissoside I, in rat plasma. An Agilent ZORBAX SB‐C18 column was used with an isocratic mobile phase system composed of methanol–water–formic acid (70:30:0.1, v/v/v) at a flow rate of 0.3 mL/min. The analysis was performed on a positive ionization electrospray mass spectrometer via selected reaction monitoring mode scan. One‐step protein precipitation with acetonitrile was chosen to extract the analytes from plasma. The lower limits of quantification were 0.9 ng/mL for tenacissoside H and tenacissoside I. The intra‐ and inter‐day precisions were 2.03–11.56 and 3.76–11.62%, respectively, and the accuracies were <110.28% at all quality control levels. The validated method was applied to a pharmacokinetic study in rats after oral gavage of Marsdenia tenacissima extract. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
W34 is a prodrug of FL118, and it can be converted to FL118 via a hydrolysis reaction. In this report, a highly sensitive LC–MS/MS method using a C18 column was validated and used for the simultaneous determination of W34 and FL118 in rat blood. A stepwise gradient elution with 0.1% formic acid in water and acetonitrile was employed. The assays were linear over a concentration range of 0.50–50.0 ng/ml for both W34 and FL118. The accuracy of the validation method ranged from 89.74 to 98.94% for W34 and from 88.61 to 94.60% for FL118. The precision was within 7.15% for W34 and 9.63% for FL118. Extraction recoveries of W34 were 94.56–100.49 and 87.67–106.32% for FL118. No significant matrix effects for both W34 and FL118 were observed in blood. The assay has been successfully applied to biological samples obtained from a stability and pharmacokinetic study of W34 and FL118.  相似文献   

11.
Cefuroxime lysine is a new second‐generation cephalosporins, which can penetrate the blood–brain barrier to cure the meningitis. In order to investigate its acute toxicokinetic study after intraperitoneal injection of 675 mg/kg cefuroxime lysine, a sensitive and clean ultra‐fast liquid chromatography–tandem mass spectrometry (UFLC‐MS/MS) method for the determination of cefuroxime lysine in microdialysate samples was developed and validated, which was compared with UFLC‐UV as a reference method. Chromatographic separation was performed on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 µm), with an isocratic elution of 0.1% formic acid in acetonitrile–0.1% formic acid in water (45:55, v/v) for LC‐MS and acetonitrile–20 mm potassium dihydrogen phosphate (pH 3.0,20:80, v/v) for LC‐UV. The lower limit of detection was 0.01 µg/mL for LC‐MS and 0.1 µg/mL for LC‐UV method, with the same corresponding linearity range of 0.1–50 µg/mL. The intra‐ and inter‐day precisions (relative standard deviation) for both methods were from 1.1 to 8.9%, while the accuracy was all within ±10.9%. The results of both methods were finally compared using paired t‐test; the results indicated that the concentrations measured by the two methods correlated significantly (p < 0.05), which suggested that the two methods based on LC‐MS and LC‐UV were suitable for the acute toxicokinetic study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Ziritaxestat is a first-in-class autotoxin inhibitor. The purpose of this study was to develop a liquid chromatography/electrospray ionization tandem mass spectrometric (LC–MS/MS) method for the determination of ziritaxestat in rat plasma. The plasma sample was deproteinated using acetonitrile and then separated on an Acquity BEH C18 column with water containing 0.1% formic acid and acetonitrile as mobile phase, which was delivered at 0.4 ml/min. Ziritaxestat and the internal standard (crizotinib) were quantitatively monitored with precursor-to-product transitions of m/z 589.3 > 262.2 and m/z 450.1 > 260.2, respectively. The total running time was 2.5 min. The method showed excellent linearity over the concentration range 0.5–2000 ng/ml, with correlation coefficient >0.9987. The extraction recovery was >82.09% and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <11.20% and accuracies were in the range of −8.50–7.45%. Ziritaxestat was demonstrated to be stable in rat plasma under the tested conditions. The validated LC–MS/MS method was successfully applied to study the pharmacokinetic profiles of ziritaxestat in rat plasma after intravenous and oral administration. Pharmacokinetic results demonstrated that ziritaxestat displayed a short half-life (~3 h) and low bioavailability (20.52%).  相似文献   

13.
The purpose of this study was to develop and validate an LC–MS/MS method for simultaneous determination of idelalisib and GS‐563117 in dog plasma. The analytes were extracted using ethyl acetate and then separated on a Waters Acquity UPLC BEH C18 column (50 × 2.1 mm, i. d., 1.7 μm) using 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.3 mL/min in gradient elution mode. The analytes were quantified using selected reaction monitoring with precursor‐to‐product transitions at m/z 416.2 → 176.1, m/z 432.2 → 192.1 and m/z 421.2 → 176.1 for idelalisib, GS‐563117 and [2H5]‐idelalisib (internal standard). The assay showed good linearity (r > 0.9992) over the tested concentration range of 0.1–600 ng/mL for idelalisib and 0.1–300 ng/mL for GS‐563117. The intra‐ and inter‐day RSD values for idelalisib and GS‐563117 were <8.84 and 12.41%, respectively. The intra‐ and inter‐day RE values were within the range of ?7.21–8.52%, and ?6.44–14.23%, respectively. The extraction recovery was found to be >84.59% and no matrix effects were observed. The validated LC–MS/MS method has been successfully applied for the simultaneous determination of idelalisib and GS‐563117 in a pharmacokinetic study in dogs. Our results suggested that idelalisib was rapidly metabolized into its metabolite GS‐563117 in dog and the in vivo exposure of GS‐563117 was 17.59% of that of idelalisib.  相似文献   

14.
A simple, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the determination of calceorioside B (CLB) in rat plasma. Detection was performed on a Thermo Scientific Hypersil Gold chromatography column using isocratic elution with a mobile phase of methanol–5 m m ammonium acetate–formic acid (70:30:0.1, v/v/v). Mass spectrometry was performed in selection reaction monitoring mode using a positive electrospray ionization interface. Good linearity was found for CLB in plasma in the linear range of 1.00–500 ng/mL (r > 0.9960). The validated method was successfully applied to the pharmacokinetic study of CLB in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
An LC–MS/MS method was developed and validated for bioanalysis of clofazimine in human dried blood spot (DBS) samples in support of a clinical study on multidrug‐resistant tuberculosis in developing countries. The validated assay dynamic range was from 10.0 to 2000 ng/mL using a 1/8 inch DBS punch. The accuracy and precision of the assay were ±11.0% (bias) and ≤13.5% (CV) for the LLOQs (10.0 ng/mL) and ±15% (bias) and ≤15% (CV) for all other QC levels. The assay was proved to be free from the possible impact owing to spot size and storage temperature (e.g. at 60°C, ≤ − 60°C). The validated assay is well suited for the intended clinical study where conventional pharmacokinetic sample collection is not feasible.  相似文献   

16.
A fast and accurate liquid chromatography/tandem mass spectrometric (LC‐MS/MS) assay was first developed and validated for the determination of deferiprone in human plasma. The analytes were extracted with acetonitrile from only 50 μL aliquots of human plasma to achieve the protein precipitation. After extraction, chromatographic separation of analytes in human plasma was performed using a Synergi Fusion‐RP 80A column at 30 °C. The mobile phase consisted of methanol and 0.2% formic acid containing 0.2 mM EDTA (60:40, v/v). The flow rate of the mobile phase was 0.8 mL/min. The total run time for each sample analysis was 4 min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the precursor‐to‐parent ion transitions m/z 140.1 → 53.1 for deferiprone and m/z 143.1 → 98.1 for internal standard. A linear range was established from 0.1 to 20 µg/mL. The limit of detection was determined as 0.05 µg/mL. The validated method was estimated for linearity, recovery, stability, precision and accuracy. Intraday and interday precisions were 4.3–5.5 and 4.6–7.3%, respectively. The recovery of deferiprone was in the range of 80.1–86.8%. The method was successfully applied to a pharmacokinetic study of deferiprone in six thalassemia patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method for the simultaneous quantification of efavirenz, emtricitabine and tenofovir was developed and validated with 100 microL human plasma. Following solid-phase extraction, the analytes were separated using a gradient mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H]+ ions, m/z 316 to 168 for efavirenz, m/z 248-130 for emtricitabine and m/z 288-176 for tenofovir, m/z 482-258 for rosuvastatin (IS), m/z 260-116 for propranolol (IS). The method exhibited a 100-fold linear dynamic range for all the three analytes in human plasma (20-2000, 2-200 and 20-2000 ng/mL for efavirenz, emtricitabine and tenofovir respectively). The lower limit of quantification was 2 ng/mL for emtricitabine and 20 ng/mL for both efavirenz and tenofovir with a relative standard deviation of less than 11%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 4 min for each sample made it possible to analyze more than 250 human plasma samples per day. The method is precise and sensitive enough for its intended purpose. The method is also successfully applied to quantify efavirenz, emtricitabine and tenofovir concentrations in a rodent pharmacokinetic study.  相似文献   

18.
FIM protein, which consists of 155 amino acids, was developed as a novel GLP-1 analog to reduce blood glucose, and pharmacodynamic results showed that it had a certain effect when used in treating Alzheimer's disease. The molecular weight of FIM is 16,304 Da. In theory, the concentration of FIM in biological samples should be determined by the ligand binding assay method or indirectly quantified using LC–MS/MS instrumentation. However, the above methods are complex and time-consuming. In this study, we successfully developed a simpler LC–MS/MS method for directly quantifying the intact FIM protein in monkey plasma for the first time. The chromatographic separation of FIM was achieved using an InertSustain Bio C18 column with a mobile phase of acetonitrile containing 0.1% formic acid (A)–water containing 0.1% formic acid (B) at a flow rate of 0.3 ml/min. Good linearity was observed in the concentration range of 5–500 ng/ml (r2 > 0.99). The intra- and inter-day precisions (expressed as relative standard deviation, RSD) of FIM were 2.30–12.8 and 7.30–13.2%, respectively. The intra- and inter-day accuracies (expressed as a relative error, RE) were −12.7–6.55 and − 10.1–0.892%, respectively. This method was successfully applied for a pharmacokinetic study of the FIM protein in four monkeys after subcutaneous administration.  相似文献   

19.
A sensitive LC–MS/MS method for the determination of bruceine D in rat plasma was developed. The analyte and IS were separated on a Luna C18 column (2.1 × 50 mm, 1.7 μm) using a mobile phase of acetonitrile and 0.1% formic acid in water (40:60, v/v) at a flow rate of 0.25 mL/min. The selected reaction monitoring mode was chosen to monitor the precursor‐to‐product ion transitions of m/z 409.2 → 373.2 for bruceine D and m/z 469.2 → 229.3 for IS using a negative ESI mode. The method was validated over a concentration range of 0.5–2000 ng/mL for bruceine D. Total chromatography time for each run was 3.5 min. The method was successfully applied to a pharmacokinetic study of bruceine D in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, simple, sensitive and selective LC‐MS/MS method has been developed and validated for quantification of the atorvastatin (AT) and niacin (NA) in 250 μL human plasma. The analytical procedure involves a liquid–liquid extraction method using nevirapine as an internal standard (IS). The chromatographic separation was achieved on a Hypurity Advance (4.6 × 50 mm, 5 µm) column using a mobile phase consisting of 0.1% formic acid buffer–acetonitrile (20:80, v/v) at flow rate of 0.8 mL/min. The API‐4000 LC‐MS/MS was operated in the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 3 min and elution of AT, NA and IS occurred at 1.06, 1.84 and 0.92 min, respectively. A detailed validation of the method was performed as per the US Food and Drug Administration guidelines and the standard curves found to be linear in the range of 0.10–30.0 ng/mL for AT and 20.2–6026 ng/mL for NA, with a coefficient of correlation of ≥0.99 for both the compounds. AT and NA were found to be stable in a battery of stability studies, viz. bench‐top, autosampler, re‐injection, wet‐extract and repeated freeze–thaw cycles. The developed assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号