首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new reactive monolith, poly(3‐chloro‐2‐hydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(HPMA‐Cl‐co‐EDMA) was synthesized and post‐functionalized by taurine (2‐aminoethane sulfonic acid) to obtain a zwitterionic stationary phase for capillary electrochromatography. The new stationary phase contained charged groups such as secondary amine providing anodic electroosmotic flow and sulfonic acid groups providing cathodic electroosmotic flow. Hence, the capillary electrochromatography separations with the new zwitterionic monolith were performed with either anodic or cathodic electroosmotic flow. The electrochromatographic separation of alkylbenzenes and phenols was successfully performed. The zwitterionic monolith also allowed the separation of nucleosides using only electrokinetic mode. Theoretical plate numbers up to ~105 plates/m were achieved. Our study is the first report based on poly(HPMA‐Cl‐co‐EDMA) reactive monolith post‐functionalized with a zwitterionic ligand allowing to operate in both anodic and cathodic electroosmotic flow modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Foret F  Zhou H  Gangl E  Karger BL 《Electrophoresis》2000,21(7):1363-1371
A modular subatmospheric electrospray interface with fiber optic UV detection close to the electrospray tip was developed for coupling of microcolumn separation techniques with mass spectrometry. The interface was based on a liquid junction with a removable microelectrospray tip. The electrospray tip was enclosed in a subatmospheric chamber attached in front of the sampling orifice of the mass spectrometer. The inlet of the liquid junction was maintained at atmospheric pressure, and thus no pressure drop developed across the separation column. The flow rate of the electrosprayed liquid from the liquid junction reservoir was adjusted by the pressure in the electrospray chamber. In this approach, a continuous and stable electrospray could be achieved without the use of an external pump. Since the electrospray did not depend on fluid delivery from the separation column, coated capillaries without electroosmotic flow as well as capillaries with electroosmotic flow could be used for capillary electrophoresis. In addition, the interface was found to be effective with capillary liquid chromatography. The use of a fiber optic UV detector placed close to the exit of the separation column provided additional detection information and a simple means of troubleshooting. The interface did not significantly influence the quality of the separation, even with columns generating several hundred thousand theoretical plates. Peptide samples in the submicromolar concentration range were detected, corresponding to a limit of detection in the attomole range.  相似文献   

3.
将聚乙烯基-3-乙基咪唑溴盐离子液体用作毛细管电泳背景电解质添加剂,利用聚合离子液体的阳离子聚合物性质静电吸附到毛细管内表面,成功实现电渗流的有效反转,建立了共电渗流模式下5种核苷类化合物分离的新方法。考察了聚合离子液体浓度、pH值等因素对电渗流的影响。在优化实验条件下,3.1 min内实现了对5种核苷类化合物的快速高效分离;将该方法分别与不加添加剂和加入离子液体单体后的体系进行对比,结果表明,该方法大大缩短了5种核苷类化合物的分析时间,提高了分析效率,最高柱效达95万/m塔板数,分析物的迁移时间RSD均不高于0.38%。该方法简单、快速、重复性好,具有很好的应用前景。  相似文献   

4.
Non-aqueous electrokinetic chromatography (NAEKC) using cationic cyclodextrins (CDs) was coupled to electrospray ionization mass spectrometry (ESI-MS). A methanolic background electrolyte (BGE) was used which contained the hydrochloride salts of the single-isomer derivative cyclodextrins 6-monodeoxy-6-mono(2-hydroxy)propylamino-beta-cyclodextrin (IPA-beta-CD) or 6-monodeoxy-6-mono(3-hydroxy)propylamino-beta-cyclodextrin (PA-beta-CD). Applying a reversed capillary electrophoresis (CE) polarity (-30 kV), efficient separation of negatively charged compounds was achieved with plate numbers of up to 190,000. PA-beta-CD appeared to be the most suitable for the separation of various acidic drugs while also providing a high chiral selectivity. Analyte detection was achieved by ESI-MS in the negative-ion mode using a sheath-liquid interface. In order to prevent current drops caused by the cathodic electroosmotic flow, a pressure of 15 mbar was applied on the inlet vial during NAEKC/MS analysis. The effect of the cationic CDs on the MS signal intensities of acidic test drugs was thoroughly studied. When a voltage is applied across the CE capillary, the overall mobility of the cationic CDs is towards the inlet vial so that no CD molecules enter the ion source. The chloride counter ions of the CDs, which migrated towards the capillary outlet, were found to cause ionization suppression, although significant analyte signals could still be detected. Depending on the CD concentration in the BGE, limits of detection for acidic drugs were in the 50-400 ng/mL range in full-scan mode.  相似文献   

5.
A multi‐functional separation column modified with 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane was developed for open tubular capillary electrochromatography. This functional hydrophilic triamine‐bonded open tubular column could generate both anodic and cathodic EOF. When the pH of the running buffer was below 5.3 (30% 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane, v/v), the anodic EOF was exhibited, which greatly prevented the undesired adsorptions of basic proteins on the capillary inner wall. Favorable separation of four basic proteins (viz. trypsin, ribonuclease A, lysozyme and cytochrome c) was successfully achieved at pH 3.5 of 10 mmol/L phosphate buffer. The column efficiencies of proteins were in the range from 87 000 to 110 000 plates/m, and the RSD values for migration time of four proteins were less than 1.2% (run‐to‐run, n=5). The ionic analytes were also separated efficiently in the co‐electroosmotic mode. The average efficiencies ranged from 81 000 to 190 000 plates/m for seven aromatic acids and 186 000–245 000 plates/m for four nucleoside monophosphates, respectively, and good capillary column repeatability was gained with RSD of the migration time not more than 3.0%. The triamine‐bonded open tubular capillary column is favorable to be an alternative functional medium for the further analysis of basic proteins and anionic analytes.  相似文献   

6.
A capillary electrophoresis method for separation and detection with time-of-flight mass spectrometry is described for tryptophan metabolites in the kynurenic pathway. Tryptophan metabolites are usually difficult to detect with electrospray mass spectrometry since they have low surface activity and occur in low nanomolar to micromolar range in body fluids. Modification of the silica-wall with 1-(4-iodobutyl)4-aza-1-azoniabicyclo[2,2,2]octane iodide, also named M7C4I, has successfully been used to deactivate the fused silica wall and generate a stable reversed electroosmotic flow. Utilizing this advantage together with electrospray ionization time-of-flight mass spectrometry, which generates high resolution and fast acquisition monitoring of species, proved to be successful even for such a complex matrix like human cerebrospinal fluid.  相似文献   

7.
Differences in the surface charges of bacteria can be exploited for their separation by capillary electrophoresis. Because of their low electrophoretic mobility, the separation is not always easy to perform, especially in the presence of the electroosmotic flow. Elimination of electroosmotic flow by capillary wall modification with γ‐(trimethoxysilyl)propyl methacrylate followed by acrylamide bonding permits separation over a distance of 8.5 cm.  相似文献   

8.
Electrokinetic supercharging is one of the most powerful sample‐stacking methods that combines field amplified sample injection and transient ITP. In counter‐flow electrokinetic supercharging, a constant counter pressure is applied during sample injection in order to counterbalance the movement of the injected sample zone. As a result, there will be a pronounced increase in the amount of sample injected and the portion of the capillary available for electrophoresis. In this report, counter‐flow electrokinetic supercharging optimization factors such as the electric field application in the constant voltage and constant current modes, the magnitude of counter pressure, and the terminating electrolyte concentrations were investigated. The enrichments obtained with a 30 min injection of 10 nM catecholamines in 5 mM terminating electrolyte solution in the constant voltage mode applying a counter pressure of 1.3 psi were 41000‐fold for dopamine, 50 000‐fold for norepinephrine, and 32 000‐fold for epinephrine, yielding detection limits of 1.3, 1.4, and 1.2 nM, respectively, with absorbance detection at 200 nm.  相似文献   

9.
A new method for protein analysis, that is, electroosmotic pump-assisted capillary electrophoresis (EOPACE), is developed and demonstrated to possess several advantages over other CE-based techniques. The column employed in EOPACE consists of two linked sections, poly(vinyl alcohol) (PVA)-coated and uncoated capillaries. The PVA-coated capillary column is the section for protein electrophoresis in EOPACE. Electroosmotic flow (EOF) is almost completely suppressed in this hydrophilic polymer coated section, so protein electrophoresis in the PVA-modified capillary is free of irreversible protein adsorption to the capillary inner wall. The uncoated capillary section serves as an electroosmotic pump, since EOF towards cathode occurs at neutral pH in the naked silica capillary. By the separation of a protein mixture containing cytochrome c (Cyt-c), myoglobin and trypsin inhibitor, we have demonstrated the advantages of EOPACE method over other relevant ones such as pressure assisted CE, capillary zone electrophoresis (CZE) with naked capillary and CZE with PVA-coated capillary. A significant feature of EOPACE is that simultaneous separation of cationic, anionic and uncharged proteins at neutral pH can be readily accomplished by a single run, which is impossible or difficult to realize by the other CE-based methods. The high column efficiency and good reproducibility in protein analysis by EOPACE are verified and discussed. In addition, separation of tryptic digests of Cyt-c with the EOPACE system is demonstrated.  相似文献   

10.
We report the fabrication and performance of a silicon‐on‐glass micro gas chromatography eight‐capillary column based on microelectromechanical systems technology that is 50 cm long, 30 μm wide, and 300 μm deep. According to the theory of a gas chromatography column, an even gas flow among different capillaries play a vital role in the peak broadening. Thus, a flow splitter structure is designed by the finite element method through the comparison of the velocity distributions of the eight‐capillary columns with and without splitter as well as an open tubular column. The simulation results reveal that eight‐capillary column with flow splitters can receive more uniform flow velocity in different capillaries, hence decreases the peak broadening and in turn increases the separation efficiency. The separation experiment results show that the separation efficiency of about 22 000 plates/m is achieved with the chip column temperature programmed for analysis of odorous sulfur pollutants. This figure is nearly two times higher than that of the commercial capillary column coated the similar stationary phase. And the separation time of all the components in the microcolumn is less than 3.8 min, which is faster than the commercial capillary column.  相似文献   

11.
The use of organic solvents or mixture of solvents in capillary electrophoresis is gaining wider attention. The electroosmotic flow mobility of eight organic solvents (acetonitrile, acetone, dimethylformamide, dimetylsulphoxide, propylene carbonate, methanol, ethanol, n-propanol) and of mixtures of several solvents (methanol-acetonitrile, methanol-propylene carbonate, acetonitrile-propylene carbonate) has been studied. The influence of 1,3-alkylimidazolium salts in different solvents on the separation of different analytes has been investigated. Some of these salts have shown usefulness for matrix-assisted laser desorption ionization matrices and off-line analysis of electrophoresis fractions. It also appears that nonaqueous capillary electrophoresis with 1,3-alkylimidazolium salts as background electrolytes is suitable for separation small inorganic ions.  相似文献   

12.
The effect of the electrospray ionization (ESI) needle voltage on the electroosmotic flow (EOF) in capillary electrophoresis (CE)-mass spectrometry (MS) was investigated. The radial electric field that penetrates across the CE capillary wall imposed by the ESI needle voltage modifies the typical EOF. This effect was investigated for buffers commonly used in CE-MS. Variations as high as ±30% were observed.  相似文献   

13.
Sample injection in microchip-based capillary zone electrophoresis (CZE) frequently rely on the use of electric fields which can introduce differences in the injected volume for the various analytes depending on their electrophoretic mobilities and molecular diffusivities. While such injection biases may be minimized by employing hydrodynamic flows during the injection process, this approach typically requires excellent dynamic control over the pressure gradients applied within a microfluidic network. The current article describes a microchip device that offers this needed control by generating pressure gradients on-chip via electrokinetic means to minimize the dead volume in the system. In order to realize the desired pressure-generation capability, an electric field was applied across two channel segments of different depths to produce a mismatch in the electroosmotic flow rate at their junction. The resulting pressure-driven flow was then utilized to introduce sample zones into a CZE channel with minimal injection bias. The reported injection strategy allowed the introduction of narrow sample plugs with spatial standard deviations down to about 45 μm. This injection technique was later integrated to a capillary zone electrophoresis process for analyzing amino acid samples yielding separation resolutions of about 4–6 for the analyte peaks in a 3 cm long analysis channel.  相似文献   

14.
酸性药物的反向电渗流高效毛细管电泳分离分析研究   总被引:7,自引:0,他引:7  
林梅  冯敏  张正行  安登魁  范国荣 《色谱》1998,16(5):383-385
以水杨酸、乙酰水杨酸为代表药物,采用十六烷基三甲基溴化铵(CTAB)为电渗流改向剂,考察了酸性药物在反向电渗流高效毛细管电泳体系中的分离行为,并对其中影响迁移时间、峰形及柱效的诸多因素进行了系统研究。研究结果表明,以阳离子表面活性剂作为电渗流改向剂的反向电渗流高效毛细管电泳体系能显著加快酸性药物的分析速度。对于CTAB与酸性药物相互作用导致峰形展宽、柱效降低的现象,可通过加入合适的有机添加剂(如β-环糊精或乙腈)加以改善。  相似文献   

15.
A method for the rapid screening and determination of amphetamine‐type designer drugs in saliva by a novel nib‐assisted paper spray‐mass spectrometry procedure is described. Under optimized conditions, the limit of detections for amphetamine derivatives (model samples: o‐, m‐, p‐chloroamphetamine and o‐, m‐, p‐fluoroamphetamine, respectively) were determined to 0.1 μg/mL by the nib‐assisted paper spray‐mass spectrometry method. This method is easier and has a higher sensitivity than similar methodologies, including atmospheric pressure/matrix‐assisted laser desorption ionization mass spectrometry and electrospray‐assisted laser desorption ionization/mass spectrometry. Data obtained using more classical separation methods, including liquid chromatography and capillary electrophoresis, are also reported.  相似文献   

16.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

17.
Capillary electrophoresis and electrokinetic chromatography are typically carried out in unmodified fused‐silica capillaries under conditions that result in a strong negative zeta potential at the capillary wall and a robust cathodic electroosmotic flow. Modification of the capillary wall to reverse the zeta potential and mask silanol sites can improve separation performance by reducing or eliminating analyte adsorption, and is essential when conducting electrokinetic chromatography separations with cationic latex nanoparticle pseudo‐stationary phases. Semipermanent modification of the capillary walls by coating with cationic polymers has proven to be facile and effective. In this study, poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) polymers were synthesized by reversible addition‐fragmentation chain transfer polymerization and used as physically adsorbed semipermanent coatings for capillary electrophoresis and electrokinetic chromatography separations. An initial synthesis of poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) polymer coating produced strong and stable anodic electroosmotic flow of –5.7 to –5.4 × 10−4 cm2/V⋅s over the pH range of 4–7. Significant differences in the magnitude of the electroosmotic flow and effectiveness were observed between synthetic batches, however. For electrokinetic chromatography separations, the best performing batches of poly([2‐(acryloyloxy)ethyl]trimethylammonium chloride) polymer performed as well as the commercially available cationic polymer polyethyleneimine, whereas polydiallylammonium chloride and hexadimethrine bromide did not perform well.  相似文献   

18.
[2‐(Methacryloyl)oxyethyl]trimethylammonium chloride was successfully polymerized by surface‐initiated atom transfer radical polymerization method on the inner surface of fused‐silica capillaries resulting in a covalently bound poly([2‐(methacryloyl)oxyethyl]trimethylammonium chloride) coating. The coated capillaries provided in capillary electrophoresis an excellent run‐to‐run repeatability, capillary‐to‐capillary and day‐to‐day reproducibility. The capillaries worked reliably over 1 month with EOF repeatability below 0.5%. The positively charged coated capillaries were successfully applied to the capillary electrophoretic separation of three standard proteins and five β‐blockers with the separation efficiencies ranging from 132 000 to 303 000 plates/m, and from 82 000 to 189 000 plates/m, respectively. In addition, challenging high‐ and low‐density lipoprotein particles could be separated. The hydrodynamic sizes of free polymer chains in buffers used in the capillary electrophoretic experiments were measured for the characterization of the coatings.  相似文献   

19.
A peptide separation strategy that combines two-dimensional (2-D) liquid chromatography (LC)-capillary zone electrophoresis (CZE) with tandem mass spectrometry (MS/MS) is described for the identification of proteins in complex mixtures. To test the effectiveness of this strategy, a serum sample was depleted of the high-abundance proteins by methanol precipitation, digested with trypsin to generate a complex peptide mixture, and separated into 96 fractions by reversed-phase (RP)-LC. Compared to ion-exchange LC separations, RPLC provides much higher resolution and peak capacity. Fractions were collected off-line from the RPLC separation, and subjected to short 20 min CZE separations. The separated zones were introduced to the mass spectrometer through a sheathless electrospray ionization interface that is integrated on the separation capillary. The ease of fabrication of the interface and its durability allowed for the analysis of all fractions on a single capillary in a relatively short analysis time. A stable electrospray was produced at nanoliter flowrates by augmenting analyte electrophoretic and electroosmotic mobilities with pressure-assisted flow. Unlike first-dimensional ion-exchange LC fractionation, where there is a large degree of overlap, the CZE-MS results show less than 15% overlap between neighboring RPLC fractions.  相似文献   

20.
Advantages and limitations are described for the different LC–MS interfacing systems (moving belt; direct liquid introduction; thermospray; atmospheric pressure ionization with heated pneumatic nebulizer, electrospray, or high flow ion spray; particle beam; and continuous flow fast atom bombardment). Some comments are also made about interfacing capillary zone electrophoresis (CZE). The peculiarities of the various interfaces are described, as are liquid chromatographic requirements prior to mass spectrometry using the different ionization techniques. Selected biological and environmental applications are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号