首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

2.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

3.
《Electroanalysis》2018,30(8):1740-1749
The use of multiple‐pulse amperometry (MPA) for the determination of narrow therapeutic index (NTI) drugs using batch injection analysis (BIA) with carbon screen‐printed electrodes (SPE) is proposed, seeking to develop a practical and low‐cost analysis kit for application in routine quality control of these drugs. The electrochemical behaviors of aminophylline, carbamazepine, clindamycin, colchicine, minoxidil, prazosin, procainamide, theophylline, warfarin and verapamil were evaluated in different electrolytes, but just one, the 0.1 mol L−1 phosphate buffer, pH 7.0, was chosen for determination of all the analytes. The amperometric detection was optimized as a function of the best oxidation potential for carbon SPE for each analyte, which was in a range from 0.7 to 1.1 V. The injection conditions were determined as a function of the velocity and the volume injected by the BIA system, which were 92.5 μL s−1 and 100 μL, respectively. Under these conditions, a good repeatability (RSD<3 %), high analytical frequency (>215 determinations per hour), large linear ranges and low LOD (<0.42 μmol L−1) for all the NTI drugs were obtained. Furthermore, the proposed method provided an easy qualitative analysis of the investigated analytes using MPA detection. The addition‐recovery studies in pharmaceutical samples containing NTI drugs and the comparison with official methods showed that the proposed analysis Kit is a very fast, simple and efficient alternative for quantification of these analytes.  相似文献   

4.
This article highlights the potential use of multi‐walled carbon‐nanotube modified screen‐printed electrodes (SPEs) for the amperometric sensing of ciprofloxacin and compares the association of batch‐injection analysis (BIA) and flow‐injection analysis (FIA) with amperometric detection. Both analytical systems provided precise (RSD<5 %) and sensitive determination of ciprofloxacin (LOD<0.1 μmol L?1) within wide linear range (up to 200 μmol L?1). Accuracy of both methods was attested by recovery values (93–107 %) and comparison with capillary electrophoresis. The BIA system is completely portable (especially due to association with SPEs) and provided faster analyses (130 h?1) and more sensitive detection than the FIA system due to the higher flow rates of injection.  相似文献   

5.
《Electroanalysis》2018,30(2):283-287
A system based on batch injection analysis (BIA) associated with amperometric detection at screen‐printed carbon electrode was used for the precise and rapid quantification of the anesthetics compounds benzocaine and tricaine in fresh fish fillets. Along this study, the best conditions for the BIA‐amperometry system were stablished for the rapid determination of these compounds. The results obtained demonstrate that the proposed method is an interesting alternative to the chromatographic methods, once it allows to perform rapid analysis (more than 300 injections per hour) with low limits of detection (3.02×10−8 mol L−1 for benzocaine and 3.19×10−8 mol L−1 for tricaine), using just 80 μL of sample for each analysis. Furthermore, it was possible to obtain high repeatability for both compounds analyzed, demonstrating good performance. The simple sample preparation developed in this study drastically reduced the amount of fat in the fish extract, favoring precision, as shown by the results of the recovery studies of both anesthetics contained in the fish samples (values above 99 % for both analytes).  相似文献   

6.
This work describes the development of a novel method for glucose determination exploiting a photoelectrochemical‐assisted batch injection analysis cell designed and constructed with the aid of 3D printer technology. The PEC‐BIA cell was coupled to a LED lamp in order to control the incidence of light on the Cu2O/Ni(OH)2/FTO photoelectroactive platform. The electrochemical characteristics of Cu2O/Ni(OH)2/FTO photoelectroactive platform were evaluated by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The PEC‐BIA cell presented linear response range, limit of detection based on a signal‐to‐noise ratio of three, and sensitivity of 1–1000 μmol L?1, 0.76 μmol L?1 and 0.578 μA L μmol?1, respectively. The PEC‐BIA method presented a mean value of the recovery values of 97.0 % to 102.0 % when it was applied to glucose determination in artificial blood plasma samples which indicates the promising performance of the proposed system to determine glucose.  相似文献   

7.
《Electroanalysis》2017,29(5):1410-1417
An electrochemical sensor for dopamine (DA) has been developed based on the electrografting of 4‐aminobenzene sulfonic acid (4‐ABSA) onto the graphite pencil lead electrode (GPLE). The process of covalent anchoring and presence of 4‐ABSA on the GPLE was studied using cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviour of the sensor towards DA, ascorbic acid (AA), and uric acid (UA) was studied in detail in phosphate buffer of pH 7. After optimizing the various parameters that influence the differential pulse voltammetric (DPV) signal for DA, the sensor exhibited a linear response over the 0.5 – 10 μmol⋅L‐1concentration range with a limit of detection, 0.095 μmol⋅L‐1 (at an S/N of 3). The sensor can selectively quantify DA even in the presence of 1 mmol⋅L‐1 AA. Distinct DPV signals were obtained for DA (at 0.191 mV vs. Ag/AgCl) and for UA (at 0.343 mV vs. Ag/AgCl). The sensor is highly selective, sensitive and stable. It was applied to the quantification of DA in injections and urine. Recovery studies were done by spiking both the real samples with a known quantity of DA.  相似文献   

8.
《Electroanalysis》2018,30(1):101-108
The present work describes the evaluation of microfluidic electroanalytical devices constructed by a 3D printer using ABS (acrylonitrile butadiene styrene) polymer combined with cotton threads as microchannels. Screen‐printed carbon electrodes (SPCEs) were used as electrochemical detector for amperometric determination of gallic and caffeic acid in wine samples. Using optimal experimental conditions (flow rate of 0.71 μL s−1, applied potential of +0.30 V and volume of injection of 2.0 μL) the proposed method presented a linear response for a concentration range of 5.0×10−6 to 1.0×10−3 mol L−1. The detection limits for gallic and caffeic acid were found to 1.5×10−6 mol L−1 and 8.0×10−7 mol L−1, respectively, with a sample throughput of 43 h−1. The achieved results are in agreement with those found using the official Folin‐Ciocaulteu method.  相似文献   

9.
This work reports the application of bismuth bulk electrode (BiBE) for the determination of 2‐methyl‐4,6‐dinitrophenol (MDNP) by differential pulse voltammetry (DPV) in Britton‐Robinson buffer of pH 12.0 as an optimal medium. BiBE was prepared by transferring molten bismuth into a glass tube under constant stream of nitrogen. The linear concentration dependences were measured from 1 to 10 μmol ? L?1 and from 10 to 100 μmol ? L?1 by using optimum accumulation potential of ?0.7 V and optimum accumulation time 30 s. Under these conditions limit of determination and limit of quantification was 0.45 and 1.5 μmol ? L?1, respectively. The developed method was successfully applied for the analysis of tap water as a model sample.  相似文献   

10.
《Electroanalysis》2018,30(9):2004-2010
The performance of screen‐printed electrodes modified in situ with tellurium film for the anodic stripping voltammetric (ASV) determination of Cu(II) is reported. It was found that two types of screen‐printed substrates, namely carbon and mesoporous carbon, were optimal for this application. The selected in situ tellurium film modified electrodes were applied for the square wave ASV determination of copper at μg L−1 concentration levels. Well‐defined and reproducible Cu oxidation stripping peaks were produced at a potential more negative than the anodic dissolution of tellurium. The highest sensitivity of Cu determination was achieved in 0.05 M HCl containing 50 μg L−1 Te(IV) after 300 s of accumulation at −0.5 V. Using the optimized procedure, a linear range from 2 to 35 μg L−1 of Cu(II) was obtained with a detection limit of 0.5 μg L−1 Cu(II) (S/N=3) for 300 s of deposition time. Both sensors, carbon TeF‐SPE and mesoporous carbon TeF‐SPE, were successfully applied for the quantification of Cu in a certified reference surface water sample.  相似文献   

11.
《Electroanalysis》2018,30(8):1678-1688
In this work, an electrochemical sensor was constructed by applying two successive thin layers of glycine‐carbon nanotubes mixture and β‐cyclodextrin (CNTs‐Gly)/CD over glassy carbon electrode surface for some neurotransmitters determination. A host‐guest interaction between CD and neurotransmitters molecules is expected and resulted in enhanced sensitivity, selectivity and stability of sensor response. Other components of the sensor are crucial for the unique electrochemical response. Carbon nanotubes allowed large surface area for glycine distribution that provided hydrogen bonding to CD moieties and contributed to facilitated charge transfer. It was possible to determine 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the linear range of 0.1 μmol L−1 to 80 μmol L−1 with detection limit of 9.40 nmol L−1, quantification limit of 31.5 nmol L−1 and sensitivity of 4.16 μA/μmol L−1. The proposed sensor was applied in synthetic cerebrospinal fluids samples using random standard addition method. Also, the proposed sensor was used to determine DOPAC in presence of common interferences and acceptable recovery results were achieved for its analysis in real blood serum. Figures of merit for (CNTs‐Gly)/CD composite in terms of precision, robustness, repeatability and reproducibility were reported.  相似文献   

12.
A system of Pt nanoparticles and poly(ortho‐phenylenediamine) film electrochemically deposited onto a glassy carbon electrode (GCE/PoPD/Pt) was fabricated. Scanning electron microscopy, Fourier‐transform infrared spectroscopy, and atomic force microscopy techniques were used to identify the surface characteristics of the composite electrode. The conductive polymers and Pt nanoparticles together resulted in a synergistic effect, and the new formed surface was highly active against polyphenolic structures. Rosmarinic acid (RA) and protocatechuic acid (PCA) are phenolic compounds found in plants, and they are used in many applications, particularly as pharmaceuticals. The GCE/PoPD/Pt was used for the simultaneous determination of RA and PCA in a pH 2.0 H2SO4 solution for the first time. The RA and PCA concentrations were determined using differential pulse voltammetry (DPV) and chronoamperometry. By the amperometry measurement, for RA and PCA, a linear relation was observed in the concentration ranges of 1–55 μmol L?1 and 1–60 μmol L?1, with detection limits of 0.5 μmol L?1 and 0.6 μmol L?1, respectively. In the simultaneous determination with DPV, the detection limits for both RA and PCA were calculated as 0.7 μmol L?1. The GCE/PoPD/Pt was successfully used for the simultaneous determination of RA and PCA in a real sample, and its accuracy was verified by high‐performance liquid chromatography studies.  相似文献   

13.
This article compares the use of batch‐injection analysis (BIA) with a conventional batch system for the anodic stripping voltammetric (ASV) determination of Pb, Cu and Hg in biodiesel using screen‐printed gold electrode (SPGE). The optimized BIA conditions were 200 µL of injection volume of the digested samples at 5 µL s?1 directly on the working electrode of the SPGE immersed in 0.1 mol L?1 HCl solution. Therefore, BIA‐ASV presented the advantages of low sample consumption, which extended the SPGE lifetime to a whole working day of analyses, and potential for on‐site analysis using battery‐powered micropipettes and potentiostats. Although presenting lower sensitivity than conventional systems, the BIA‐ASV presented detection limit values of 1.0, 0.5 and 0.7 µg L?1, respectively for Pb, Cu and Hg, a linear range between 20 and 280 µg L?1, and adequate recovery values (90–110 %) for spiked biodiesel samples.  相似文献   

14.
《Electroanalysis》2018,30(5):868-876
Antihistamines such as pheniramine (PHN) or chlorpheniramine (CPH) are commonly associated with naphazoline (NPZ) in eye drops and nasal decongestants. In this work, a batch‐injection analysis system with multiple pulse amperometric (BIA‐MPA) detection has been applied for the first time for fast simultaneous determination of naphazoline (NPZ) and pheniramine (PHN) or NPZ and chlorpheniramine (CPH). PHN or CPH was selectively detected at +1.1 V and both PHN and NPZ or CPH and NPZ were detected at +1.3 V using boron doped diamond (BDD) as working electrode and Britton‐Robinson (BR) buffer (pH=10.0) as supporting electrolyte. The current of NPZ can then be obtained by subtraction of the currents detected at both potential pulses and applying a correction factor (CF). The proposed method presented good intra‐day repeatability (RSD between 0.7 and 3.2 % for PHN; 0.7 and 2.1 % for CPH; 1.5 and 4.0 % for NPZ; n=20), high analytical frequency (>80 injections h−1), and limits of detection of 0.64, 0.47 and 0.11 μmol L−1 for PHN, CPH and NPZ, respectively. The results obtained with the proposed method are in agreement with those obtained by HPLC (95 % confidence level).  相似文献   

15.
《Electroanalysis》2004,16(23):1977-1983
2,2‐bis(3‐Amino‐4‐hydroxyphenyl)hexafluoropropane (BAHHFP) was electro‐polymerized oxidatively on glassy carbon by cyclic voltammetry. The activity of the modified electrode towards ascorbic acid (AA), uric acid (UA) and dopamine (DA) was characterized with cyclic voltammetry and differential puls voltammetry (DPV). The findings showed that the electrode modification drastically suppresses the response of AA and shifts it towards more negative potentials. Simultaneously an enhancement of reaction reversibility is seen for DA and UA. Unusual, selective preconcentration features are observed for DA when the polymer‐modified electrode is polarized at negative potential. In a ternary mixture containing the three analytes studied, three baseline resolved peaks are observed in DPV mode. At physiological pH 7.4, after 5 min preconcentration at ?300 mV, peaks positions were ?0.073, 0.131 and 0.280 V (vs. Ag/AgCl) for AA, DA and UA, respectively. Relative selectivities DA/AA and UA/AA were over 4000 : 1 and 700 : 1, respectively. DA response was linear in the range 0.05–3 μM with sensitivity of 138 μA μM?1 cm?2 and detection limit (3σ) of 5 nM. Sensitive quantification of UA was possible in acidic solution (pH 1.8). Under such conditions a very sharp peak appeared at 630 mV (DPV). The response was linear in the range 0.5–100 μM with sensitivity of 4.67 μA μM?1 cm?2 and detection limit (3σ) of 0.1 μM. Practical utility was illustrated by selective determination of UA in human urine.  相似文献   

16.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

17.
《Electroanalysis》2003,15(22):1778-1781
The voltammetric behavior of N,N‐dimethyl‐4‐amino‐2′‐carboxyazobenzene was investigated by differential pulse voltammetry (DPV) at a mercury meniscus‐modified silver solid amalgam electrode (m‐AgSAE). Conditions have been found for its determination by DPV at m‐AgSAE in the concentration range of 0.4 to 15 μmol L?1.  相似文献   

18.
The voltammetric behavior of two genotoxic nitro compounds (4‐nitrophenol and 5‐nitrobenzimidazole) has been investigated using direct current voltammetry (DCV) and differential pulse voltammetry (DPV) at a polished silver solid amalgam electrode (p‐AgSAE), a mercury meniscus modified silver solid amalgam electrode (m‐AgSAE), and a mercury film modified silver solid amalgam electrode (MF‐AgSAE). The optimum conditions have been evaluated for their determination in Britton‐Robinson buffer solutions. The limit of quantification (LQ) for 5‐nitrobenzimidazole at p‐AgSAE was 0.77 µmol L?1 (DCV) and 0.47 µmol L?1 (DPV), at m‐AgSAE it was 0.32 µmol L?1 (DCV) and 0.16 µmol L?1 (DPV), and at MF‐AgSAE it was 0.97 µmol L?1 (DCV) and 0.70 µmol L?1 (DPV). For 4‐nitrophenol at p‐AgSAE, LQ was 0.37 µmol L?1 (DCV) and 0.32 µmol L?1 (DPV), at m‐AgSAE it was 0.14 µmol L?1 (DCV) and 0.1 µmol L?1 (DPV), and at MF‐AgSAE, it was 0.87 µmol L?1 (DCV) and 0.37 µmol L?1 (DPV). Thorough comparative studies have shown that m‐AgSAE is the best sensor for voltammetric determination of the two model genotoxic compounds because it gives the lowest LQ, is easier to prepare, and its surface can be easily renewed both chemically (by new amalgamation) and/or electrochemically (by imposition of cleaning pulses). The practical applicability of the newly developed methods was verified on model samples of drinking water.  相似文献   

19.
《Electroanalysis》2006,18(2):127-130
The voltammetric behavior of 2‐methyl‐4,6‐dinitrophenol was investigated by differential pulse voltammetry (DPV) at a nontoxic mercury meniscus‐modified silver solid amalgam electrode (m‐AgSAE). Conditions have been found for its determination by DPV at m‐AgSAE in the concentration range of 0.2 to 1 μmol L?1.  相似文献   

20.
《中国化学》2017,35(8):1317-1321
A novel non‐enzymatic nitrite sensor was fabricated by immobilizing MnOOH‐PANI nanocomposites on a gold electrode (Au electrode). The morphology and composition of the nanocomposites were investigated by transmission electron microscopy (TEM ) and Fourier transform infrared spectrum (FTIR ). The electrochemical results showed that the sensor possessed excellent electrocatalytic ability for NO2 oxidation. The sensor displayed a linear range from 3.0 μmol•L−1 to 76.0 mmol•L−1 with a detection limit of 0.9 μmol•L−1 (S/N = 3), a sensitivity of 132.2 μA •L•mol−1•cm−2 and a response time of 3 s. Furthermore, the sensor showed good reproducibility and long‐term stability. It is expected that the MnOOH‐PANI nanocomposites could be applied for more active sensors and used in practice for nitrite sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号