首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the potential applications of all‐polymer solar cells (all‐PSCs) as wearable power generators, there is an urgent need to develop photoactive layers that possess intrinsic mechanical endurance, while maintaining a high power‐conversion efficiency (PCE).Herein a strategy is demonstrated to simultaneously control the intercalation behavior and nanocrystallite size in the polymer–polymer blend by using a newly developed, high‐viscosity polymeric additive, poly(dimethylsiloxane‐co‐methyl phenethylsiloxane) (PDPS), into the TQ‐F:N2200 all‐PSC matrix. A mechanically robust 10wt% PDPS blend film with a great toughness was obtained. Our results provide a feasible route for producing high‐performance ductile all‐PSCs, which can potentially be used to realize stretchable all‐PSCs as a linchpin of next‐generation electronics.  相似文献   

2.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

3.
Electron transport materials (ETM) play an important role in the improvement of efficiency and stability for inverted perovskite solar cells (PSCs). This work reports an efficient ETM, named PDI‐C60, by the combination of perylene diimide (PDI) and fullerene. Compared to the traditional PCBM, this strategy endows PDI‐C60 with slightly shallower energy level and higher electron mobility. As a result, the device based on PDI‐C60 as electron transport layer (ETL) achieves high power conversion efficiency (PCE) of 18.6 %, which is significantly higher than those of the control devices of PCBM (16.6 %) and PDI (13.8 %). The high PCE of the PDI‐C60‐based device can be attributed to the more matching energy level with the perovskite, more efficient charge extraction, transport, and reduced recombination rate. To the best of our knowledge, the PCE of 18.6 % is the highest value in the PSCs using PDI derivatives as ETLs. Moreover, the device with PDI‐C60 as ETL exhibits better device stability due to the stronger hydrophobic properties of PDI‐C60. The strategy using the PDI/fullerene hybrid provides insights for future molecular design of the efficient ETM for the inverted PSCs.  相似文献   

4.
Dong  Sheng  Zhang  Kai  Liu  Xiang  Yin  Qingwu  Yip  Hin-Lap  Huang  Fei  Cao  Yong 《中国科学:化学(英文版)》2019,62(1):67-73
An organic-inorganic hybrid cathode interfacial layer(CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide(ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells(PSCs) exhibited a remarkable enhancement of power conversion efficiency(PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage(VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor(FF) and short-circuit current density(JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs.  相似文献   

5.
Metal-cation defects and halogen-anion defects in perovskite films are critical to the efficiency and stability of perovskite solar cells (PSCs). In this work, a random polymer, poly(methyl methacrylate-co-acrylamide) (PMMA-AM), was synthesized to serve as an interfacial passivation layer for synergistically passivating the under-coordinated Pb2+ and anchor the I- of the [PbI6]4− octahedron. Additionally, the interfacial PMMA-AM passivation layer cannot be destroyed during the hole transport layer deposition because of its low solubility in chlorobenzene. This passivation leads to an enhancement in the open-circuit voltage from 1.12 to 1.22 V and improved stability in solar cell devices, with the device maintaining 95 % of the initial power conversion efficiency (PCE) over 1000 h of maximum power point tracking. Additionally, a large-area solar cell module was fabricated using this approach, achieving a PCE of 20.64 %.  相似文献   

6.
It is highly desirable to develop novel n‐type organic small molecules as an efficient electron‐transport layer (ETL) for the replacement of PCBM to obtain high‐performance metal‐oxide‐free, solution‐processed inverted perovskite solar cells (PSCs) because this type of solar cells with a low‐temperature and solution‐based process would make their fabrication more feasible and practical. In this research, the new azaacene QCAPZ has been synthesized and employed as non‐fullerene ETL material for inverted PSCs through a solution‐based process without the need for additional dopants or additives. The as‐fabricated inverted PSCs show a power conversion efficiency up to 10.26 %. Our results clearly suggest that larger azaacenes could be promising electron‐transport materials to achieve high‐performance solution‐processed inverted PSCs.  相似文献   

7.
Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V.  相似文献   

8.
A new broad bandgap and 2D‐conjugated D‐A copolymer, PBDTBTz‐T , based on bithienyl‐benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz‐T :PC71BM blend film with a lower PC71BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz‐based D–A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs.

  相似文献   


9.
A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are 3.50% and 1.21% for PSCs with and without the ZnO thin film, respectively. Light intensity dependence of the photocurrent and the capacitance-voltage measurement demonstrate that the increased PCEs are due to the restriction of the strong bimolecular recombination in the interface when a thin ZnO layer is inserted between the polymer active layer and the ITO electrode. These results demonstrate that the ZnO thin film plays an important role in the performance of PSCs with an inverted device structure.  相似文献   

10.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

11.
All‐polymer solar cells (all‐PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high‐performance polymer acceptors limits their power conversion efficiency (PCE) to a value lower than those of the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high‐performance polymer acceptor PZ1 by embedding an acceptor–donor–acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low band gap of 1.55 eV and high absorption coefficient (1.3×105 cm−1). The all‐PSCs with the wide‐band‐gap polymer PBDB‐T as donor and PZ1 as acceptor showed a record‐high PCE of 9.19 % for the all‐PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all‐PSCs.  相似文献   

12.
Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71BM (phenyl‐C71‐butyric acid methyl ester) usually has a “random” composition of mixed regioisomers or stereoisomers. Here PC71BM has been isolated into three typical isomers, α‐, β1‐ and β2‐PC71BM, to establish the isomer‐dependent photovoltaic performance on changing the ternary composition of α‐, β1‐ and β2‐PC71BM. Mixing the isomers in a ratio of α/β12=8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71BM as photoactive layer (PTB7=poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]). The three typical PC71BM isomers, even though sharing similar LUMO energy levels and light absorption, render starkly different photovoltaic performances with average‐performing PCE of 1.28–7.44 % due to diverse self‐aggregation of individual or mixed PC71BM isomers in the otherwise same polymer solar cells.  相似文献   

13.
《中国化学》2018,36(6):502-506
Fluorination of conjugated polymers is one of the effective strategies to tune the molecular energy levels and morphology for high efficient polymer solar cells (PSCs). Herein, two novel donor‐acceptor conjugated polymers, PffBT and PBT, based on bis(3,5‐bis(hexyloxy)phenyl)benzo[1,2‐ b:4,5‐b']dithiophene and benzo[c][1,2,5]thiadiazole (BT) with or without fluorination, respectively, were synthesized, and their photovoltaic properties were compared. The polymer PffBT based on fluorinated BT showed lower frontier energy levels, improved polymer ordering, and a well‐developed fibril structure in the blend with PC71BM. As a result, the PSCs based on PffBT/PC71BM exhibit a superior power conversion efficiency (PCE) of 8.6% versus 4.4% for PBT‐based devices, due to a high space charge limit current (SCLC) hole mobility, mixed orientation of polymer crystals in the active layer, and low bimolecular recombination.  相似文献   

14.
A heterostructured semiconductor–metal ZnO?Ag nanoparticle (NP) composite was constructed through a straightforward photocatalytic strategy by using UV irradiation of ZnO NPs and an aqueous solution of Ag precursor. The ZnO?Ag NP composites serve as an effective cathode‐modifying layer in polymer solar cells (PSCs) with increased short‐circuit current density owing to the light‐trapping effect, and improved optical and electrical conductivity properties compared with pure ZnO NPs. The Ag NPs, which are photodeposited in situ on ZnO NPs, can act as effective antennas for incident light to maximize light harvesting and minimize radiative decay or nonradiative losses, consequently resulting in the enhanced photogeneration of excitons in PSCs. Systematic photoelectron and ‐physical investigations confirm that heterostructured ZnO?Ag NPs can significantly improve charge separation, transport, and collection, as well as lower charge recombination at the cathode interface, leading to a 14.0 % improvement in air‐processed device power conversion efficiency. In addition, this processable, cost‐effective, and scalable approach is compatible with roll‐to‐roll manufacturing of large‐scale PSCs.  相似文献   

15.
高效率的聚合物太阳电池依赖于光吸收活性层材料对太阳光能量的充分利用.电极界面材料将光吸收活性层产生的空穴和电子分别快速高效地抽取到阳极和阴极,并通过进一步改进光伏器件的结构提升能量转换效率和稳定性.本课题组在光吸收活性层中新型聚合物给体材料、新型电极界面材料、利用水/醇性电极界面材料制作新型倒装器件结构的太阳电池方面取得重要进展,推动了太阳电池在能量转换效率和稳定性方面的突破.  相似文献   

16.
A ZnO@reduced graphene oxide–poly(N‐vinylpyrrolidone) (ZnO@RGO‐PVP) nanocomposite, prepared by in situ growth of ZnO nanoparticles on PVP‐decorated RGO (RGO‐PVP) was developed as a cathode buffer layer for improving the performance of polymer solar cells (PSCs). PVP not only favors homogeneous distribution of the RGO through the strong π–π interactions between graphene and PVP molecules, but also acts as a stabilizer and bridge to control the in situ growth of sol–gel‐derived ZnO nanoparticles on the surface of the graphene. At the same time, RGO provides a conductive connection for independent dispersion of ZnO nanoparticles to form uniform nanoclusters with fewer domain boundaries and surface traps. Moreover, the LUMO level of ZnO is effectively improved by modification with RGO‐PVP. Compared to bare ZnO, a ZnO@RGO‐PVP cathode buffer layer substantially reduces the recombination of carriers, increases the electrical conductivity, and enhances electron extraction. Consequently, the power conversion efficiency of an inverted device based on thieno[3,4‐b]thiophene/benzodithiophene (PTB7):[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) with ZnO@RGO‐PVP as cathode buffer layer was greatly improved to 7.5 % with improved long‐term stability. The results reveal that ZnO@RGO‐PVP is universally applicable as a cathode buffer layer for improving the performance of PSCs.  相似文献   

17.
An  Cunbin  Xin  Jingming  Shi  Lanlan  Ma  Wei  Zhang  Jianqi  Yao  Huifeng  Li  Sunsun  Hou  Jianhui 《中国科学:化学(英文版)》2019,62(3):370-377
Science China Chemistry - In polymer solar cells (PSCs), twisted polymer donors usually have low photovoltaic efficiencies due to their poor photoactive layer morphologies. Herein, we successfully...  相似文献   

18.
近年来,钙钛矿光伏电池(PSCs)取得了突飞猛进的发展,迄今最高认证光电转换效率达到25.7%,但是钙钛矿材料常使用有毒的重金属元素铅,对环境和人体都有极大的危害,不利于其实际应用,因此发展无铅PSCs受到越来越多的关注。锡基钙钛矿材料具有优异的光电性质,特别是带隙窄、载流子迁移率高和激子复合能低,是无铅钙钛矿中最具有潜力的材料。反式(p-i-n型)锡基PSCs由于低迟滞效应、可低温制备及低成本等优点获得普遍关注,取得了一系列重要突破,目前最高效率已经突破14%,具有巨大的发展潜力。鉴于反式锡基钙钛矿太阳能的迅速发展,本文系统综述了反式锡基PSCs制备及稳定性研究进展,尤其关注反式锡基PSCs的界面修饰、锡基钙钛矿材料性能、构筑高质量锡基钙钛矿薄膜的方法以及提高稳定性的策略,并讨论了锡基PSCs的前景展望。  相似文献   

19.
We have synthesized a series of maleimide–thiophene copolymers presenting pendent 2-hydroxylethyl and fullerene units for use as photo-energy conversion materials in polymer solar cells (PSCs), which we fabricated from blends of these maleimide–thiophene copolymers and the fullerene derivative [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM). A too-homogenous distribution of the 2-hydroxylethyl-functionalized copolymer and PCBM inhibited charge separation and transport in the photoactive layer. Introducing fullerenes as pendent units of the copolymer promoted the formation of phase-separated interpenetrating networks with sizable PCBM domains in the photoactive layer, favorable for transporting charges to the electrodes. The photovoltaic performance and operational stability of PSCs based on the fullerene-functionalized copolymer/PCBM blends were superior to those based on the hydroxyethyl-functionalized copolymer/PCBM blends.  相似文献   

20.
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short‐circuit current density and open‐circuit voltage in comparison with the corresponding HD‐PDFC‐DTBT (HD)‐ and DT‐PDPPTPT (DPP)‐based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号