首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel magnetic core–shell polydopamine–cupric ion complex imprinted polymer was prepared in one‐step through surface imprinting technology, which could specifically recognize bovine hemoglobin from the real blood samples. The polymerization conditions and adsorption performance of the resultant nanomaterials were investigated in detail. The results showed that the cupric ion played an important role in the recognition of template proteins. The saturating adsorption capacity of this kind of imprinted polymers was 2.23 times greater than those of imprinted polymers without cupric ion. The imprinting factor of the imprinted materials was as high as 4.23 for the template molecule. The selective separation bovine hemoglobin from the real blood sample is successfully applied. In addition, the prepared materials had excellent stability and no obvious deterioration after five adsorption–regeneration cycles. Easy preparation, rapid separation, high binding capacity and satisfactory selectivity for the template protein make this polymer attractive in the separation of high‐abundance proteins.  相似文献   

2.
Protein‐imprinted polymers with hollow cores that have a super‐high imprinting factor were prepared by etching the core of the surface‐imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single‐protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super‐high imprinting factor was obtained. The as‐prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples.  相似文献   

3.
In this work, novel magnetic molecularly imprinted polymers were prepared for the selective extraction of osthole from Libanotis Buchtomensis herbal extract. During the synthesis process, double bonds grafted on the surface of Fe3O4 nanoparticles could not only drive the temple molecules to locate onto the surface of vinyl‐functionalized magnetic nanoparticles by π–π conjugation, which makes the distribution of binding sites ordered, but also direct the occurrence of imprinting polymerization at the surface of magnetic nanoparticles by the copolymerization of vinyl terminal groups with functional monomers and cross‐linking agent. The characteristics of the resulting polymers were evaluated by transmission electron microscopy, X‐ray diffraction, Fourier‐transform infrared spectroscopy, and vibrating sample magnetometry. Adsorption kinetics, isotherms, selectivity, reproducibility, and reusability were discussed, which suggest that the obtained nanomaterials possess rapid binding kinetics, high adsorption capacity of 17.65 mg/g, and favorable selectivity for the target molecule. Satisfactory reproducibility and reusability were verified as well. Meanwhile, the resultant imprinted nanoparticles were successfully applied to selectively separate osthole from the herbal extract, which show great potential in extracting active ingredients from traditional Chinese medicine.  相似文献   

4.
We describe novel cinnamic acid polydopamine‐coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi‐walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high‐performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid‐phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4–115.0% for cinnamic acid, 89.4–103.0% for ferulic acid and 86.6–96.0% for caffeic acid.  相似文献   

5.
Thermo‐responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N‐isopropylacrylamide as the thermo‐responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5–100 μg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 μg/mL, respectively. Furthermore, the thermo‐responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature‐responsive regulation.  相似文献   

6.
Glycoproteins are crucial in massive physiological events and clinical application. It is necessary to prepare new materials to isolate the specific glycoprotein. New and simple core–shell molecularly imprinted polymers were prepared by surface imprinting. The polymers are synthesized with magnetic nanoparticles as the core, water‐soluble dendritic polyethyleneimine as the monomer and the ovalbumin as the template. The prepared imprinted polymers showed thin imprinted shell, biocompatibility and superparamagnetic properties. The resultant materials exhibited fast kinetics, high adsorption capacity, perfect selectivity and reusability. More important, they can absorb the template glycoprotein from the neutral solution and successfully be applied to recognize the ovalbumin from egg white, which means that they can provide an alternate method to isolate glycoprotein from bodily fluids.  相似文献   

7.
Novel thermosensitive molecularly imprinted polymers were successfully prepared using the epitope imprinting approach in the presence of the mimic template phenylphosphonic acid, the functional monomer vinylphosphonic acid‐Ti4+, the temperature‐sensitive monomer N‐isopropylacrylamide and the crosslinker N,N′‐methylenebisacrylamide. The ratio of the template/thermosensitive monomers/crosslinker was optimized, and when the ratio was 2:2:1, the prepared thermosensitive molecularly imprinted polymers had the highest imprinting factor. The synthetic thermosensitive molecularly imprinted polymers were characterized by Fourier transform infrared spectroscopy to reveal the combination and elution processes of the template. Then, the adsorption capacity and thermosensitivity was measured. When the temperature was 28°C, the imprinting factor was the highest. The selectivity and adsorption capacity of the thermosensitive molecularly imprinted polymers for phosphotyrosine peptides from a mixture of three tailor‐made peptides were measured by high‐performance liquid chromatography. The results showed that the thermosensitive molecularly imprinted polymers have good selectivity for phosphotyrosine peptides. Finally, the imprinted hydrogels were applied to specifically adsorb phosphotyrosine peptides from a sample mixture containing phosphotyrosine and a tryptic digest of β‐casein, which demonstrated high selectivity. After four rebinding cycles, 78.9% adsorption efficiency was still retained.  相似文献   

8.
In this research, a surface imprinting strategy has been adopted in protein imprinting. Bovine hemoglobin surface-imprinted polystyrene (PS) nanoparticles with magnetic susceptibility have been synthesized through multistage core-shell polymerization system using 3-aminophenylboronic acid (APBA) as functional and cross-linking monomers. Superparamagnetic molecularly imprinted polystyrene nanospheres with poly(APBA) thin films have been synthesized and used for the first time for protein molecular imprinting in an aqueous solution. The magnetic susceptibility is imparted through the successful encapsulation of Fe3O4 nanoparticles. The morphology, adsorption, and recognition properties of superparamagnetic molecularly imprinted polymers (MIPs) have been investigated using transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Rebinding experimental results show that poly(APBA) MIPs-coated superparamagnetic PS nanoparticles have high adsorption capacity for template protein bovine hemoglobin and comparatively low nonspecific adsorption. The imprinted superparamagnetic nanoparticles could easily reach the adsorption equilibrium and achieve magnetic separation in an external magnetic field, thus avoiding some problems of the bulk polymer.  相似文献   

9.
Dummy template surface molecularly imprinted polymers based on silica gel were prepared through the surface molecular imprinting technique. Nonpoisonous nicotinamide, which is a structural analogue of imidacloprid and acetamidine, was chosen as the dummy template molecule. The obtained polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The results showed that the polymers exhibited high adsorption capacity and selectivity for imidacloprid and acetamiprid. The maximum adsorption capacities of the polymers toward imidacloprid and acetamiprid were 42.05 and 22.99 mg/g, and the adsorption could reach binding equilibrium within 150 min. The polymers were successfully applied as column‐filling materials to extract imidacloprid and acetamiprid from tea polyphenols with a relatively high removal rate (92.36 and 95.20%). The polymers also showed great stability and reusability during the application. The obtained polymers possessed good application prospects for removing imidacloprid and acetamiprid in tea polyphenol production processes.  相似文献   

10.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

11.
In this study, highly selective core–shell molecularly imprinted polymers on the surface of magnetic nanoparticles were prepared using protocatechuic acid as the template molecule. The resulting magnetic molecularly imprinted polymers were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The binding performances of the prepared materials were evaluated by static and selective adsorption. The binding isotherms were obtained for protocatechuic acid and fitted by the Langmuir isotherm model and Freundlich isotherm model. Furthermore, the resulting materials were used as the solid‐phase extraction materials coupled to high‐performance liquid chromatography for the selective extraction and detection of protocatechuic acid from the extracts of Homalomena occulta and Cynomorium songaricum with the recoveries in the range 86.3–102.2%.  相似文献   

12.
Surface molecularly imprinted polymers were successfully prepared by a novel two‐step precipitation polymerization method. The first‐step allowed the formation of 4‐vinylpyridine divinylbenzene and trimethylolpropane trimethacrylate copolymeric microspheres. In the second‐step precipitation polymerization, microspheres were modified with a molecularly imprinting layer of oleanolic acid as template, methacrylic acid as functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as cross‐linker. The obtained polymers had an average diameter of 4.43 μm and a polydispersity index of 1.011; adsorption equilibrium was achieved within 40 min, with adsorption capacity reaching 27.4 mg/g. Subsequently, the polymers were successfully applied as the adsorbents of molecularly imprinted solid‐phase extraction to separate and purify the oleanolic acid from grape pomace. The content of oleanolic acid in the grape pomace extract was enhanced from 13.4 to 93.2% after using the molecularly imprinted solid‐phase extraction process. This work provides an efficient way for effective oleanolic acid separation and enrichment from complex matrices, which is especially valuable in industrial production.  相似文献   

13.
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high‐yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water‐soluble azobenzene involving 5‐[(4, 3‐(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. Through the evaluation of a series of features of spectroscopic and nano‐structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo‐responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.  相似文献   

14.
羟基苯甲酸类化合物用途广泛,极性较强,在复杂水溶液体系中这些类似物的分离纯化与分析非常困难。 本文以磁性Fe3O4纳米颗粒为载体,没食子酸(GA)为模板分子,制备了磁性表面分子印迹聚合物(MIP)。 利用透射电子显微镜、红外光谱、磁强测定等检测手段对MIP进行了结构表征。 并对其吸附性能进行研究,比较了该MIP对GA及其它3种结构类似物的吸附性能差异。 结果表明,制备的以GA为模板的磁性分子印迹聚合物为核壳球形结构,键合牢固,对GA的吸附动力学符合准二级动力学方程模型,吸附过程属于Langmuir单分子层吸附。 该聚合物对GA表现出优异的选择性识别能力,其吸附量(318 K时37.736 mg/g)远远高于结构类似物。 该磁性分子印迹聚合物对模板分子不仅具有特异识别能力,而且能够磁控分离,分离效率高,可用于固相萃取。  相似文献   

15.
Novel core–shell dual‐template molecularly imprinted superparamagnetic nanoparticles were synthesized using bovine hemoglobin and bovine serum albumin as the templates for the efficient depletion of these two high‐abundance proteins from blood plasma for the first time. The preparation process combined surface imprinting technique and a two‐step immobilized template strategy. The obtained polymers were fully characterized by transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results showed that the as‐synthesized nanomaterials possessed homogeneous and thin imprinted shells with a thickness of about 5 nm, stable crystalline phase, and superparamagnetism. The binding performance of the imprinted polymers was investigated through a series of adsorption experiments, which indicated that the products had satisfactory recognition ability for bovine hemoglobin and bovine serum albumin. The resultant nanoparticles were also successfully applied to simultaneously selective removal of two proteins from a real bovine blood sample.  相似文献   

16.
利用硼酸功能化的磁性碳纳米管作为反应基质, 采用一种简便、 绿色的硼酸亲和表面定向印迹法制备了槲皮素磁性分子印迹聚合物, 并将其应用于银杏叶提取物中槲皮素的特异性识别. 透射电子显微镜、 X射线光电子能谱仪、 X射线衍射及振动样品磁强计测试结果表明, 制备的分子印迹聚合物具有良好的形貌和晶型结构. 吸附实验结果表明, 该分子印迹聚合物对模板分子槲皮素具有较好的吸附容量(4.57 μg/mg)、 良好的印迹效果(IF=8.44)和再生能力. 对实际中药样品银杏叶提取物的吸附实验结果表明, 所建立的方法能达到预期的槲皮素检测效果, 可作为中药有效成分槲皮素的特异性识别工具.  相似文献   

17.
A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, vibrating sample magnetometry, X‐ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2–97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra‐ and inter‐day precisions were in the range of 1.7–2.9% and 3.4–5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples.  相似文献   

18.
陈朗星  刘雨星  何锡文  张玉奎 《色谱》2015,33(5):481-487
以表面修饰双键的Fe3O4@SiO2纳米颗粒为基体,以萘夫西林(nafcillin)为模板,甲基丙烯酸(MAA)为单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用三步升温聚合法合成了核壳结构的萘夫西林磁性分子印迹聚合物。采用傅里叶变换红外光谱仪(FT-IR)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和振动样品磁强计(VSM)对制备的印迹聚合物微球进行了表征,得到的磁性印迹聚合物微球的粒径在320 nm左右,大小均匀,分散性较好,可以在外加磁场下与溶剂实现快速分离。对磁性印迹和非印迹聚合物进行了吸附性能研究,结果表明该印迹聚合物微球对模板分子具有很高的吸附容量(50.7 mg/g),特异性识别性能良好(印迹因子为2.46),有望应用于实际样品中萘夫西林残留量的富集分析。  相似文献   

19.
A novel type of magnetic molecularly imprinted polymer was prepared for the selective enrichment and isolation of chelerythrine from Macleaya cordata (Willd) R. Br. The magnetic molecularly imprinted polymers were prepared using functional Fe3O4@SiO2 as a magnetic support, chelerythrine as template, methacrylic acid as functional monomer, and ethylene glycol dimethacrylate as cross‐linker. Density functional theory at the B3LYP/6‐31G (d, p) level with Gaussian 09 software was applied to calculate the interaction energies of chelerythrine, methacrylic acid and the complexes formed from chelerythrine and methacrylic acid in different ratios. The structural features and morphology of the synthesized polymers were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and vibration sample magnetometry. Adsorption experiments revealed that the magnetic molecularly imprinted polymers possessed rapid kinetics, high selectivity, and a higher binding capacity (7.96 mg/g) to chelerythrine than magnetic molecularly non‐imprinted polymers (2.36 mg/g). The adsorption process was in good agreement with the Langmuir adsorption isotherm and pseudo‐second‐order kinetics models. Furthermore, the magnetic molecularly imprinted polymers were successfully employed as adsorbents for the extraction and enrichment of chelerythrine from Macleaya cordata (Willd) R. Br. The results indicated that the magnetic molecularly imprinted polymers were suitable for the selective adsorption of chelerythrine from complex samples such as natural medical plants.  相似文献   

20.
We prepared ofloxacin restricted access media molecularly imprinted polymers using surface‐initiated atom transfer radical polymerization on the surface of brominated silica gel using ofloxacin as a template molecule, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a crosslinking agent. We then characterized and studied the surface morphology and adsorption properties of the polymer. Experimental results show that saturation is reached within 25 min, and that the saturated adsorption capacity was 80.67 mg/g and the imprinting factor was 1.94. Our findings also showed that the polymer surface had good hydrophilicity and an excellent protein exclusion rate, which was 98.49%. The restricted access media molecularly imprinted polymers were then successfully applied to the enrichment and separation of ofloxacin in bovine serum. When combined with high‐performance liquid chromatography, and the average recovery of ofloxacin was 95.6%, and the relative standard deviation was in the range of 2.47–3.38%. In a word, the restricted access media molecularly imprinted polymers is a method that involves a simple preparation procedure that results in excellent performance, which is a great improvement in the speed of detection of antibiotics. These qualities are what bestow upon this method its great potential for broad application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号