首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper discusses recent progress in transition‐metal‐catalyzed living radical polymerizations, partly focusing on the search of metal complex catalysts that play a critical role in controlling polymer molecular weights, then‐distributions, and architectures. Following a brief overview of the design of initiating systems (initiators and metal catalysts), half‐metallocene‐type complex catalysts are presented that induce living radical polymerizations of methacrylates, acrylates, and styrene to give markedly narrow molecular weight distributions and controlled molecular weights. Some of these halfmetallocenes also work in water where suspension living radical polymerization is feasible.  相似文献   

2.
A strategy for expanding the utility of chiral pyridine‐2,6‐bis(oxazoline) (pybox) ligands for asymmetric transition metal catalysis is introduced by adding a bidentate ligand to modulate the electronic properties and asymmetric induction. Specifically, a ruthenium(II) pybox fragment is combined with a cyclometalated N‐heterocyclic carbene (NHC) ligand to generate catalysts for enantioselective transition metal nitrenoid chemistry, including ring contraction to chiral 2H‐azirines (up to 97 % ee with 2000 TON) and enantioselective C(sp3)?H aminations (up to 97 % ee with 50 TON).  相似文献   

3.
New methods for the stereocontrolled synthesis of octahedral metal complexes are needed in order to fully exploit the stereochemical richness of the octahedron in the fields of catalysis, materials sciences, and life sciences. Whereas a large body of work exists regarding the diastereoselective coordination chemistry with chiral ligands, such efforts are restricted to certain carefully designed chiral ligands which remain in the coordination sphere. The emerging strategy of chiral‐auxiliary‐mediated asymmetric synthesis holds promise to solve the problem of controlling relative and absolute configuration in octahedral metal complexes in a general fashion, thus hopefully in the future providing access to any desired optical active octahedral metal complex without the need for chiral separations. This short review will summarize reported examples of chiral auxiliaries applied to the asymmetric synthesis of octahedral metal complexes.  相似文献   

4.
This work deals with the enantioseparation of α‐amino acids by chiral ligand exchange high‐speed countercurrent chromatography using Nn‐dodecyl‐l ‐hydroxyproline as a chiral ligand and copper(II) as a transition metal ion. A biphasic solvent system composed of n‐hexane/n‐butanol/aqueous phase with different volume ratios was selected for each α‐amino acid. The enantioseparation conditions were optimized by enantioselective liquid–liquid extractions, in which the main influence factors, including type of chiral ligand, concentration of chiral ligand and transition metal ion, separation temperature, and pH of the aqueous phase, were investigated for racemic phenylalanine. Altogether, we tried to enantioseparate 15 racemic α‐amino acids by the analytical countercurrent chromatography, of which only five of them could be successfully enantioseparated. Different elution sequence for phenylalanine enantiomer was observed compared with traditional liquid chromatography and the proposed interactions between chiral ligand, transition metal ion (Cu2+), and enantiomer are discussed.  相似文献   

5.
We herein report the catalytic enantioselective hydrodehalogenation based on the interplay of a chiral molecular nickel(I)/nickel(II)hydride system. Prochiral geminal dihalogenides are dehalogenated via a secondary configurationally unstable, potentially metal‐stabilized radical intermediate. In a subsequent step, the liberated radical is then trapped by the nickel(II) hydrido complex, present in a large excess under the catalytic conditions, which in turn induces the enantioselectivity during the hydrogen atom transfer onto the radical intermediate. These new chiral nickel(I) complexes were found to catalyze the asymmetric hydrodehalogenation of geminal dihalogenides with moderate to good enantiomeric excess values using LiEt3BH as reductant. The main side product generally observed is the dehalogenated alkene, whereas the hydrodehalogenation of the chiral monohalogen compound occurred much more slowly despite the large excess of reductant.  相似文献   

6.
As important reactive species, isoindolinones represent a cluster of valuable building blocks for the construction of natural‐product‐like compounds. In particular, chiral isoindolinones are the key structural feature of naturally occurring bioactive molecules. During the past decade, great advances have been made in the asymmetric synthesis of isoindolinone skeleton compounds. Hence, recent progress in catalytic asymmetric synthesis of isoindolinones is reviewed here, with emphasis on chiral organocatalysis and transition metal complexes enabled transformations. Different organocatalysts (chiral phosphoric acids, phase transfer catalysts, chiral thioureas) and chiral transition‐metal complexes (Rh, Pd, Ir, Cu, Mg, and Ni) are included in this transformation.  相似文献   

7.
The common use of NHC complexes in transition‐metal mediated C–C coupling and metathesis reactions in recent decades has established N‐heterocyclic carbenes as a new class of ligand for catalysis. The field of asymmetric catalysis with complexes bearing NHC‐containing chiral ligands is dominated by mixed carbene/oxazoline or carbene/phosphane chelating ligands. In contrast, applications of complexes with chiral, chelating bis(NHC) ligands are rare. In the present work new chiral iridium(I) bis(NHC) complexes and their application in the asymmetric transfer hydrogenation of ketones are described. A series of chiral bis(azolium) salts have been prepared following a synthetic pathway, starting from L ‐valinol and the modular buildup allows the structural variation of the ligand precursors. The iridium complexes were formed via a one‐pot transmetallation procedure. The prepared complexes were applied as catalysts in the asymmetric transfer hydrogenation of various prochiral ketones, affording the corresponding chiral alcohols in high yields and moderate to good enantioselectivities of up to 68%. The enantioselectivities of the catalysts were strongly affected by the various, terminal N‐substituents of the chelating bis(NHC) ligands. The results presented in this work indicate the potential of bis‐carbenes as stereodirecting ligands for asymmetric catalysis and are offering a base for further developments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The combination of a transition‐metal catalyst and organocatalyst was designed to achieve a highly enantioselective system for the allylic dearomatization reaction of naphthols with racemic secondary allylic alcohols. The desired β‐naphthalenones, bearing an all‐carbon quaternary center, were obtained in good yields with high chemo‐ and enantioselectivities. The cooperative catalytic system, involving a chiral iridium complex and phosphoric acid, provided measurable improvements in yields, and chemo‐ and enantioselectivities relative to single‐catalyst systems. Control experiments indicated that the chiral iridium complex functions as a key species in the control of the absolute configuration, thus enabling the formation of both β‐naphthalenone enantiomers by simply employing opposite enantiomeric ligands.  相似文献   

9.
Diastereoselective radical hydroacylation of chiral alkylidenemalonates with aliphatic aldehydes is realized by the combination of a hypervalent iodine(III) reagent and UV‐light irradiation. The reaction is initiated by the photolysis of hypervalent iodine(III) reagents under mild, metal‐free conditions, and is the first example of diastereoselective addition of acyl radicals to olefins to afford chiral ketones in a highly stereoselective fashion. The obtained optically active ketones are useful chiral synthons, as exemplified by the short formal synthesis of (?)‐methyleneolactocin.  相似文献   

10.
Increasing attention has been devoted in the last decades to chiral chromatography, principally to high‐performance liquid chromatography techniques using a chiral stationary phase. Many chiral high‐performance liquid chromatography columns are commercially available, but, unfortunately, they are most often rather expensive. A cheap alternative to the commercial chiral columns is the dynamic‐coating procedure of a standard achiral stationary phase with a chiral selector containing both a chiral domain and a chain or a group able to tightly (but noncovalently) bind the achiral support. This is the case of Nτ‐decyl‐l ‐spinacine, already successfully employed to dynamically cover a reversed‐phase column to separate racemic mixtures of amino acids through the ligand‐exchange mechanism. In the present work, the same chiral selector is employed to separate racemic mixtures of amino acids and oligopeptides, in the absence of metal ions: no coordination complex is formed, but only electrostatic and weak nonbonding interactions between the chiral phase and the analytes are responsible for the observed enantioselectivity. The new method is simpler than the previous one, very effective in the case of aromatic amino acids and oligopeptides and also suitable for preparative purposes.  相似文献   

11.
We propose a non‐radical mechanism for the conversion of methane into methanol by soluble methane monooxygenase (sMMO), the active site of which involves a diiron active center. We assume the active site of the MMOHQ intermediate, exhibiting direct reactivity with the methane substrate, to be a bis(μ‐oxo)diiron(IV ) complex in which one of the iron atoms is coordinatively unsaturated (five‐coordinate). Is it reasonable for such a diiron complex to be formed in the catalytic reaction of sMMO? The answer to this important question is positive from the viewpoint of energetics in density functional theory (DFT) calculations. Our model thus has a vacant coordination site for substrate methane. If MMOHQ involves a coordinatively unsaturated iron atom at the active center, methane is effectively converted into methanol in the broken‐symmetry singlet state by a non‐radical mechanism; in the first step a methane C? H bond is dissociated via a four‐centered transition state (TS1) resulting in an important intermediate involving a hydroxo ligand and a methyl ligand, and in the second step the binding of the methyl ligand and the hydroxo ligand through a three‐centered transition state (TS2) results in the formation of a methanol complex. This mechanism is essentially identical to that of the methane–methanol conversion by the bare FeO+ complex and relevant transition metal–oxo complexes in the gas phase. Neither radical species nor ionic species are involved in this mechanism. We look in detail at kinetic isotope effects (KIEs) for H atom abstraction from methane on the basis of transition state theory with Wigner tunneling corrections.  相似文献   

12.
Based on chiral, enantiomerically pure 7‐[(S)‐phenylethylurea]‐8‐hydroxyquinoline ( 1 ‐H), trinuclear helicate‐type complexes 2 – 5 are formed with divalent transition‐metal cations. X‐ray structural analyses reveal the connection of two monomeric complex units [M( 1 )3]? (M=Zn, Mn, Co, Ni) by a central metal ion to form a “dimer”. Due to the enantiopurity of the ligand, the complexes are obtained as pure enantiomers, resulting in pronounced circular dichroism (CD) spectra. Single‐ion effects and intra‐ and intermolecular coupling are observed with dominating ferromagnetic coupling in the case of the cobalt(II) and nickel(II) and dominating antiferromagnetic coupling in the case of the manganese(II) complex.  相似文献   

13.
Arene hydrogenation provides direct access to saturated carbo‐ and heterocycles and thus its strategic application may be used to shorten synthetic routes. This powerful transformation is widely applied in industry and is expected to facilitate major breakthroughs in the applied sciences. The ability to overcome aromaticity while controlling diastereo‐, enantio‐, and chemoselectivity is central to the use of hydrogenation in the preparation of complex molecules. In general, the hydrogenation of multisubstituted arenes yields predominantly the cis isomer. Enantiocontrol is imparted by chiral auxiliaries, Brønsted acids, or transition‐metal catalysts. Recent studies have demonstrated that highly chemoselective transformations are possible. Such methods and the underlying strategies are reviewed herein, with an emphasis on synthetically useful examples that employ readily available catalysts.  相似文献   

14.
The controlled radical chemistry of bismuth compounds is still in its infancy. Further developments are fueled by the properties of these complexes (e.g., low toxicity, high functional group tolerance, low homolytic bond dissociation energies, and reversible homolytic bond dissociations), which are highly attractive for applications in synthetic chemistry. Here we report the first catalytic application of transition metal bismuthanes (i.e. compounds with a Bi–TM bond; TM=transition metal). Using the catalyzed radical cyclo‐isomerization of δ‐iodo‐olefins as a model reaction, characteristics complementary or superior to known B, Mn, Cu, Zn, Sn, and alkali metal reagents are demonstrated (including a different crucial intermediate), establishing transition metal bismuthanes as a new class of (pre‐)catalysts for controlled radical reactions.  相似文献   

15.
郑志侠屈锋  林金明 《中国化学》2003,21(11):1478-1484
Chiral separation of dausyl amino acids by capillary electrophoresis using mixed selectors of Mn(ll)-L-alanine complex and β-cyclodextrin (β-CD) was studied. Resolution was considerably superior to that obtained by using either Mn (Ⅱ)-L-alanine complex or β-CD alone. The effects of separation parameters, such as pH value of buffer solution, capillary temperature, the concentration of Mn (Ⅱ)-L-alanine complex, the types of CD and ligand on the migration times and resolutions were investigated. Six different transition metal complexes,Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ) and Cd(Ⅱ)-L-alanine complexes have been employed and compared with Mn(Ⅱ)complex. Differences in retention and selectivity were found.The substitution of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) for Mn(Ⅱ) resulted in a better chiral resolution while Hg(Ⅱ) and Cd(Ⅱ) showed poorer resolution abilities. The chiral separation mechanism was also discussed briefly.  相似文献   

16.
Metal carbenes derived from transition metal‐catalyzed decomposition of diazo compounds react with nucleophiles with heteroatoms, such as alcohols and amines, to generate highly active oxonium/ammonium ylides intermediates. These intermediates can be trapped by appropriate electrophiles to provide three‐component products. Based on this novel trapping process, we have developed novel multicomponent reactions (MCRs) of diazo compounds, alcohols/anilines, and electrophiles. The nucleophiles were also extended to electron‐rich heterocycles (indoles and pyrroles)/arenes, in which the resulting zwitterionic intermediates were also trapped by electrophiles. By employing efficient catalysis strategy, the reactions were realized with excellent stereocontrol and wide substrate scope. In this personal account, we introduce our breakthroughs in the development of novel asymmetric MCRs via trapping of the active ylides and zwitterionic intermediates with a number of electrophiles, such as imines, aldehyde, and Michael acceptors, under asymmetric catalysis. Transition metal/chiral Lewis acid catalysis, transition metal/Brønsted acid catalysis, and chiral transition‐metal catalysis, enable excellent stereocontrolled outcomes. The methodologies not only provide experimental evidence to support the existence of protic onium ylides intermediates/zwitterionic intermediates and the stepwise pathways of carbene‐induced O?H, N?H and C?H insertions, but also offer a novel approach for the efficient construction of chiral polyfunctional molecules.  相似文献   

17.
The asymmetric functionalization of C?H bond is a particularly valuable approach for the production of enantioenriched chiral organic compounds. Chiral N‐heterocyclic carbene (NHC) ligands have become ubiquitous in enantioselective transition‐metal catalysis. Conversely, the use of chiral NHC ligands in metal‐catalyzed asymmetric C?H bond functionalization is still at an early stage. This minireview highlights all the developments and the new advances in this rapidly evolving research area.  相似文献   

18.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

19.
Chiral recognition of alpha-hydroxy acids has been achieved, and mixtures of enantiomers have been quantified in the gas phase, by using the kinetics of competitive unimolecular dissociation of singly-charged transition metal ion-bound trimeric complexes, [M(II)(A)(ref*)(2)-H](+) (M(II)=divalent transition metal ion; A=alpha-hydroxy acid; ref*=chiral reference ligand), to form the dimeric complexes [M(II)(A)(ref*)-H](+) and [M(II)(ref*)(2)-H](+). Chiral selectivity, the ratio of these two fragment ion abundances for the complex containing the analyte in one enantiomeric form expressed relative to that for the fragments of the corresponding complex containing the other enantiomer, ranges from 0.65 to 7.32. Chiral differentiation is highly dependent on the choice of chiral reference compound and central metal ion. The different coordination geometry of complexes resulting from the different d-orbital electronic configurations of these transition metal ions plays a role in chiral discrimination. Of all the transition metal ions examined chiral recognition is lowest for Cu(II), because of large distortion of the coordination complexes, and hence weak metal-ligand interactions and small stereochemical effects. It seems that two independent pi-cation interactions occur when N-acetyl-substituted aromatic amino acids used as the reference ligands and this accounts for improved chiral discrimination. If both metal-ligand and ligand-ligand interactions are optimized, large chiral selectivity is achieved. The sensitive nature of the methodology and the linear relationship between the logarithm of the fragment ion abundance ratio and the optical purity, which are intrinsic to the kinetic method, enable mixtures to be analyzed for small enantiomeric excess ( ee) by simply recording the ratios of fragment ion abundances in a tandem mass spectrum.  相似文献   

20.
A continuous‐flow process based on a chiral transition‐metal complex in a supported ionic liquid phase (SILP) with supercritical carbon dioxide (scCO2) as the mobile phase is presented for asymmetric catalytic transformations of low‐volatility organic substrates at mild reaction temperatures. Enantioselectivity of >99 % ee and quantitative conversion were achieved in the hydrogenation of dimethylitaconate for up to 30 h, reaching turnover numbers beyond 100 000 for the chiral QUINAPHOS–rhodium complex. By using an automated high‐pressure continuous‐flow setup, the product was isolated in analytically pure form without the use of any organic co‐solvent and with no detectable catalyst leaching. Phase‐behaviour studies and high‐pressure NMR spectroscopy assisted the localisation of optimum process parameters by quantification of substrate partitioning between the IL and scCO2. Fundamental insight into the molecular interactions of the metal complex, ionic liquid and the surface of the support in working SILP catalyst materials was gained by means of systematic variations, spectroscopic studies and labelling experiments. In concert, the obtained results provided a rationale for avoiding progressive long‐term deactivation. The optimised system reached stable selectivities and productivities that correspond to 0.7 kg L ?1 h?1 space–time yield and at least 100 kg product per gram of rhodium, thus making such processes attractive for larger‐scale application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号