首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 564 毫秒
1.
Poly(isoindigo‐alt‐3,4‐difluorothiophene) (PIID[2F]T) analogues used as “polymer acceptors” in bulk‐heterojunction (BHJ) solar cells achieve >7 % efficiency when used in conjunction with the polymer donor PBFTAZ (model system; copolymer of benzo[1,2‐b:4,5‐b′]dithiophene and 5,6‐difluorobenzotriazole). Considering that most efficient polymer‐acceptor alternatives to fullerenes (e.g. PC61BM or its C71 derivative) are based on perylenediimide or naphthalenediimide motifs thus far, branched alkyl‐substituted PIID[2F]T polymers are particularly promising non‐fullerene candidates for “all‐polymer” BHJ solar cells.  相似文献   

2.
Organic solar cells have made rapid progress in the last two decades due to the innovation of conjugated materials and photovoltaic devices. Microphase separation that connects with materials and devices plays a crucial role in the charge generation process. In this account, we summary our recent works of developing new crystalline conjugated polymers to control the microphase separation in thin films in order to realize high performance in solar cells, including crystalline diketopyrrolopyrrole‐based donor polymers, perylene bisimide‐based electron acceptors, and “double‐cable” conjugated polymers that contain covalently‐linked crystalline donor and acceptor in one material for single‐component organic solar cells.  相似文献   

3.
Branched‐alkyl‐substituted poly(thieno[3,4‐c]pyrrole‐4,6‐dione‐alt‐3,4‐difluorothiophene) (PTPD[2F]T) can be used as a polymer acceptor in bulk heterojunction (BHJ) solar cells with a low‐band‐gap polymer donor (PCE10) commonly used with fullerenes. The “all‐polymer” BHJ devices made with PTPD[2F]T achieve efficiencies of up to 4.4 %. While, to date, most efficient polymer acceptors are based on perylenediimide or naphthalenediimide motifs, our study of PTPD[2F]T polymers shows that linear, all‐thiophene systems with adequately substituted main chains can also be conducive to efficient BHJ solar cells with polymer donors.  相似文献   

4.
《中国化学》2018,36(6):495-501
In this work, a new A‐D‐A type nonfullerene small molecular acceptor SiIDT‐IC, with a fused‐ring silaindacenodithiophene (SiIDT) as D unit and 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile (INCN) as the end A unit, was design and synthesized. The SiIDT‐IC film shows absorption peak and edge at 695 and 733 nm, respectively. The HOMO and LUMO of SiIDT‐IC are of −5.47 and −3.78 eV, respectively. Compared with carbon‐bridging, the Si‐bridging can result in an upper‐lying LUMO level of an acceptor, which is benefit to achieve a higher open‐circuit voltage in polymer solar cells (PSCs). Complementary absorption and suitable energy level alignment between SiIDT‐IC and wide bandgap polymer donor PBDB‐T were found. For the PBDB‐T:SiIDT‐IC based inverted PSCs, a D/A ratio of 1: 1 was optimal to achieve a power conversion efficiency (PCE) of 7.27%. With thermal annealing (TA) of the blend film, a higher PCE of 8.16% could be realized due to increasing of both short‐circuit current density and fill factor. After the TA treatment, hole and electron mobilities were elevated to 3.42 × 10−4 and 1.02 × 10−4 cm2·V−1·s−1, respectively. The results suggest that the SiIDT, a Si‐bridged fused ring, is a valuable D unit to construct efficient nonfullerene acceptors for PSCs.  相似文献   

5.
《中国化学》2018,36(4):280-286
We successfully designed and synthesized two BDT‐BT‐T (BDT=benzo[1,2‐b:4,5‐b']dithiophene, BT‐T=4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole) based polymers as the electron donor for application in all‐polymer solar cells (all‐PSCs). By adopting N2200 as the electron acceptor, we systematically investigated the impact of fluorination on the charge transfer, transport, blend morphology and photovoltaic properties of the relevant all‐PSCs. A best power conversion efficiency (PCE) of 3.4% was obtained for fluorinated PT‐BT2F/N2200 (BT2F=difluorobenzo[c][1,2,5]thiadiazole) all‐PSCs in comparison with that of 2.7% in non‐fluorinated PT‐BT/N2200 (BT=benzothiadiazole) based device. Herein, all‐polymers blends adopting either non‐fluorinated PT‐BT or fluorinated PT‐BT2F exhibit similar morphology features. In depth optical spectrum measurements demonstrate that molecular fluorination can further enhance charge transfer between donor and acceptor polymer. Moreover, all‐polymer blends exhibit improved hole mobilities and more balanced carriers transport when adopting fluorinated donor polymer PT‐BT2F. Therefore, although the PCE is relatively low, our findings may become important in understanding how subtle changes in molecular structure impact relevant optoelectronic properties and further improve the performance of all‐PSCSs.  相似文献   

6.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

7.
The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm‐length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology. A numerical model is developed and Monte Carlo simulations to study the basis of compatibility or dispersibility of TPs in polymer matrices are performed. The simulations show that bare TPs tend to form clusters in the matrix of excess polymers. The clustering is significantly reduced after grafting polymer chains to the TPs, which is confirmed experimentally. Transmission electron microscopy reveals that the block copolymer‐TP mixtures (“hybrids”) show much better film qualities and TP distributions within the films when compared with the homopolymer‐TP mixtures (“blends”), representing massive aggregations and cracks in the films. This grafting‐to approach for the modification of TPs significantly improves the dispersion of the TPs in matrices of “excess” polymers up to the arm length of 100 nm.  相似文献   

8.
《先进技术聚合物》2018,29(8):2237-2244
A conjugated polyelectrolyte poly(9,9‐bis(3′‐[(N,N‐dimethyl)‐N‐ethylammonium]‐propyl)‐2,7‐fluorene dibromide) (PFBr) with the feature of environmental friendliness and cheapness was successfully used in polymer solar cells (PSCs) as the cathode interfacial layer (CIL). And we successfully demonstrate that the PFBr can build interfacial dipoles at the CIL/cathode interfaces, leading to reduce cathode work functions and improve open‐circuit voltages, which decrease interfacial energy loss at the cathode. It not only improves the electron transfer efficiency but also inhibits the charge carrier recombination at the contact interface. Impedance spectra revealed that the optimal device with the smallest charge transport time constant of 2.83 microseconds was achieved under the concentration of 2 mg mL−1 of PFBr, which suggests efficient electron transport on the interface between the organic active layer and the indium tin oxide cathode. Moreover, as a consequence, the power conversion efficiency of the PSCs increases to 3.83% (with PFBr as CIL) from 1.89% (without any CIL), based on the poly(3‐hexylthiophene) and [6,6]‐phenyl C61‐butyric acid methyl ester bulk heterojunction active layer. Therefore, our observation can demonstrate PFBr is a prospective candidate as CIL for constructing low‐cost, large‐area, and flexible PSCs.  相似文献   

9.
《先进技术聚合物》2018,29(2):806-813
Surface‐initiated atom transfer radical polymerization (SI‐ATRP) was used to graft poly(N‐isopropylacrylamide) (PNIPAM) brush layers with a controllable thickness in the 10‐nm range from silicon substrates. The rate of polymerization of N‐isopropylacrylamide was tuned by the [Cu(II)]0/[Cu(I)]0 ratio between the deactivating and activating species. The polymer layer thickness was characterized by atomic force microscopy (AFM) and ellipsometry. PNIPAM layers with a dry thickness between 5.5 and 16 nm were obtained. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed that the chemical structure is PNIPAM brushes. Analysis of the AFM data showed that our procedure leads to polymer grafts in the “mushroom‐to‐brush” transition regime.  相似文献   

10.
DTfBT‐Th3, a new conjugated polymer based on dithienobenzothiadiazole and terthiophene, possesses a bandgap of ≈1.86 eV and a HOMO level of −5.27 eV. Due to strong interchain aggregation, DTfBT‐Th3 can not be well dissolved in chloro­benzene (CB) and o‐dichlorobenzene (DCB) at room temperature (RT), but the polymer can be processed from hot CB and DCB solutions of ≈100 °C. In CB, with a lower solvation ability, a certain polymer chain aggregation can be preserved, even in hot solution. DTfBT‐Th3 displays a field‐effect hole mobility of 0.55 cm2 V−1 s−1 when fabricated from hot CB solution, which is higher than that of the device processed from hot DCB (0.16 cm2 V−1 s−1). In DTfBT‐Th3‐based polymer solar cells, a good power conversion efficiency from 5.37% to 6.67% can be achieved with 150−300 nm thick active layers casted from hot CB solution, while the highest efficiency for hot DCB‐processed solar cells is only 5.07%. The results demonstrate that using a solvent with a lower solvation ability, as a “wet control” process, is beneficial to preserve strong interchain aggregation of a conjugated polymer during solution processing, showing great potential to improve its performances in optoelectronic devices.

  相似文献   


11.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

12.
A family of conformational rheological models for multi‐component miscible polymer blends is developed using a modified form of the Poisson bracket formulation. Two conformation tensors called c 1 and c 2 are introduced to show the orientation of the first and the second components of a blend, respectively. The mobility tensor and the energy function for each blend component are expressed in terms of these conformation tensors. The interaction effects are also included by energy expressions. The predictions of this family of “volume‐preserving” models are illustrated for a Hookean‐type energy function and several expressions of the modified mobility tensors. The results are illustrated for material functions in transient (start‐up and relaxation) and steady shear flows. The predictions are compared with experimental data taken from the literature for a miscible polymer blend. Study of the model sensitivity to its parameter shows that model predictions can cover a wide range of rheological behavior generally observed for multi‐component miscible polymer blends in steady and transient shear flows.

Experimental data and model predictions for steady shear viscosity for HDPE/LDPE blends.  相似文献   


13.
Nanostructures derived from amphiphilic DNA–polymer conjugates have emerged prominently due to their rich self‐assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA–polymer nanostructures of various shapes by leveraging polymerization‐induced self‐assembly (PISA) for polymerization from single‐stranded DNA (ssDNA). A “grafting from” protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA–polymer conjugates and DNA–diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA–polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye‐labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA–polymer nanostructures.  相似文献   

14.
《Electroanalysis》2017,29(10):2217-2223
Ionic diode phenomena occur at asymmetric ionomer | aqueous electrolyte microhole interfaces. Depending on the applied potential, either an “open” or a “closed” diode state is observed switching between a high ion flow rate and a low ion flow rate. Physically, the “open” state is associated mainly with conductivity towards the microhole within the ionomer layer and the “closed” state is dominated by restricted diffusion‐migration access to the microhole interface opposite to the ionomer. In this report we explore a “heterojunction” based on an asymmetric polymer of intrinsic microporosity (PIM) | Nafion ionomer microhole interface. Improved diode characteristics and current rectification are observed in aqueous NaCl. The effects of creating the PIM | Nafion micro‐interface are investigated and suggested to lead to novel sensor architectures.  相似文献   

15.
Fabrication and functionalization of hydrogels from well‐defined dendron‐polymer‐dendron conjugates is accomplished using sequential radical thiol‐ene “click” reactions. The dendron‐polymer conjugates were synthesized using an azide‐alkyne “click” reaction of alkene‐containing polyester dendrons bearing an alkyne group at their focal point with linear poly(ethylene glycol)‐bisazides. Thiol‐ene “click” reaction was used for crosslinking these alkene functionalized dendron‐polymer conjugates using a tetrathiol‐based crosslinker to provide clear and transparent hydrogels. Hydrogels with residual alkene groups at crosslinking sites were obtained by tuning the alkene‐thiol stoichiometry. The residual alkene groups allow efficient postfunctionalization of these hydrogel matrices with thiol‐containing molecules via a subsequent radical thiol‐ene reaction. The photochemical nature of radical thiol‐ene reaction was exploited to fabricate micropatterned hydrogels. Tunability of functionalization of these hydrogels, by varying dendron generation and polymer chain length was demonstrated by conjugation of a thiol‐containing fluorescent dye. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 926–934  相似文献   

16.
The first example of core cross‐linked star (CCS) polyrotaxane was prepared using the poly(ϵ‐caprolactone) (PCL) CCS three‐dimensional (3D) scaffold. The 3D CCS polymer was firstly prepared through the “arm‐first” approach. Then, the “arms” of the resultant PCL CCS polymer were threaded with α‐cyclodextrins (α‐CDs). The threaded α‐CDs were permanently locked by the “click” reaction of terminal alkyne functionalities of the star polymers with the azide‐functionalized end caps to afford the CCS polyrotaxanes. All analytical results confirm the formation of the CCS polyrotaxanes and reveal their characteristics, including fluorescence under UV, a channel‐type crystalline structure, a two‐step thermal decomposition, and a unique core‐shell structure in great contrast to the polymer precursors.  相似文献   

17.
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel “turn‐on” carbon‐dot‐based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave‐assisted method and exhibit red fluorescence (λem=615 nm) with high quantum yields (15 %). Then, an on–off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation‐induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs–GSH mixture could behave as an off–on fluorescent probe for temperature. Thus, red‐emitting CNDs can be utilized for “turn‐on” fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3‐E1 cells as an example model to demonstrate the red‐emitting CNDs can function as “non‐contact” tools for the accurate measurement of temperature and its gradient inside a living cell.  相似文献   

18.
《中国化学》2018,36(3):194-198
Organic polymer solar cells (PSCs) have attracted increasing attention due to light weight, low cost, flexibility and roll‐to‐roll manufacturing. However, the limited light harvest range of the photoactive layer greatly restrains the power conversion efficiency (PCE) enhancement. In order to expand the light absorption range and further enhance the PCE of the PSCs, tandem structures have been designed and demonstrated. In tandem solar cell, the intermediate layer (IML) plays a critical role in physically and electrically connection of the two subcells. Herein, we apply titanium (diisopropoxide) bis(2,4‐pentanedionate) (TIPD) as both electrode modification layer and intermediate layer to investigate the feasibility in inverted tandem polymer solar cells. The same photoactive layers of PTB7‐Th:PC71BM are adopted in both front and rear subcells to simplify the evaluation of effectiveness of TIPD layer in tandem structures. By modulating the treatment condition of IML and the thickness of photoactive layer, efficient inverted tandem PSCs have been achieved with minimized voltage loss and excellent charge transportation, giving a best Voc of 1.54 V, which is almost two times that of the single bulk heterojunction (BHJ)‐PSC (0.78 V) and an enhanced PCE up to 8.11%.  相似文献   

19.
Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71BM (phenyl‐C71‐butyric acid methyl ester) usually has a “random” composition of mixed regioisomers or stereoisomers. Here PC71BM has been isolated into three typical isomers, α‐, β1‐ and β2‐PC71BM, to establish the isomer‐dependent photovoltaic performance on changing the ternary composition of α‐, β1‐ and β2‐PC71BM. Mixing the isomers in a ratio of α/β12=8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71BM as photoactive layer (PTB7=poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]). The three typical PC71BM isomers, even though sharing similar LUMO energy levels and light absorption, render starkly different photovoltaic performances with average‐performing PCE of 1.28–7.44 % due to diverse self‐aggregation of individual or mixed PC71BM isomers in the otherwise same polymer solar cells.  相似文献   

20.
Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (HCT‐PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm?1 and a low sheet resistance of 0.59 ohm sq?1. Organic solar cells with laminated HCT‐PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum‐deposited Ag top electrodes. More importantly, the HCT‐PEDOT:PSS film delivers a specific capacitance of 120 F g?1 at a current density of 0.4 A g?1. All‐solid‐state flexible symmetric supercapacitors with the HCT‐PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm?3 at a power density of 100 mW cm?3 and 3.15 mWh cm?3 at a very high power density of 16160 mW cm?3 that outperforms previous reported solid‐state supercapacitors based on PEDOT materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号