首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress induced by reactive oxygen species (ROS) is one of the critical factors that involves in the pathogenesis and progression of many diseases. However, lack of proper techniques to scavenge ROS depending on their cellular localization limits a thorough understanding of the pathological effects of ROS. Here, we demonstrate the selective scavenging of mitochondrial, intracellular, and extracellular ROS using three different types of ceria nanoparticles (NPs), and its application to treat Parkinson's disease (PD). Our data show that scavenging intracellular or mitochondrial ROS inhibits the microglial activation and lipid peroxidation, while protecting the tyrosine hydroxylase (TH) in the striata of PD model mice. These results indicate the essential roles of intracellular and mitochondrial ROS in the progression of PD. We anticipate that our ceria NP systems will serve as a useful tool for elucidating the functions of various ROS in diseases.  相似文献   

2.
3.
Cancer cells produce elevated levels of reactive oxygen species, which has been used to design cancer specific prodrugs. Their activation relies on at least a bimolecular process, in which a prodrug reacts with ROS. However, at low micromolar concentrations of the prodrugs and ROS, the activation is usually inefficient. Herein, we propose and validate a potentially general approach for solving this intrinsic problem of ROS‐dependent prodrugs. In particular, known prodrug 4‐(N ‐ferrocenyl‐N ‐benzylaminocarbonyloxymethyl)phenylboronic acid pinacol ester was converted into its lysosome‐specific analogue. Since lysosomes contain a higher concentration of active ROS than the cytoplasm, activation of the prodrug was facilitated with respect to the parent compound. Moreover, it was found to exhibit high anticancer activity in a variety of cancer cell lines (IC50=3.5–7.2 μm ) and in vivo (40 mg kg−1, NK/Ly murine model) but remained weakly toxic towards non‐malignant cells (IC50=15–30 μm ).  相似文献   

4.
5.
In this study, we successfully synthesized CuxCoyS supraparticles (SPs) on the nanoscale featuring multiple pores inside and strong absorption from 400 to 900 nm. Porous CuxCoyS SPs produced the highest reactive oxygen species (ROS) yield (1.39) when illuminated with near‐infrared (NIR) light. Furthermore, we demonstrated that CuxCoyS SPs could be used to identify cancer cells through intracellular telomerase‐responsive fluorescence (FL) imaging in living cells. Because the CuxCoyS SPs were associated with telomerase‐responsive bioimaging and high ROS production, they can be efficiently used in the diagnosis and therapy of tumors with high selectivity and excellent therapeutic effects in vivo. This study provides a new vision for the creation of multifunctional SPs, which can be used as cellular sensors and control tools for pathologies across a broad range of biological systems.  相似文献   

6.
Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS‐producing hybrid nanoparticle‐based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO2 nanoparticle afforded TiO2‐N3. Upon exposure of TiO2‐N3 to light, the N3 injected electrons into TiO2 to produce three‐ and four‐fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO2 at 160 mmHg. TiO2‐N3 maintained three‐fold higher hydroxyl radicals than TiO2 under hypoxic conditions via N3‐facilitated electron–hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content.  相似文献   

7.
In addition to being the energy powerhouse of the cell, mitochondria are an important source of reactive oxygen species (ROS) during the process of molecular oxygen metabolism. Mitochondrial ROS are closely associated with normal physiological functions as well as human diseases, and participate in cell signaling, nucleic acid and protein damage, and oxidative stress induction. However, the complicated interplay between mitochondrial ROS and the cellular pathological state has not been fully elucidated. It is expected that research on the mitochondrial ROS undertaking in the molecular pathogenesis of human diseases would benefit from development of efficient tools for the detection of these ROS. In recent years, an increasing number of fluorescent probes for mitochondrial ROS with high sensitivity and selectivity have been developed. Here, we present a review of the recent advances in small molecular fluorescent probes for selective detection of ROS inside the mitochondria. In this review, the design, synthesis, characteristics, and applications of the published fluorescent probes for mitochondrial ROS are discussed in detail.  相似文献   

8.
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living‐cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC‐core–shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano‐core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles.  相似文献   

9.
10.
赵晋源  张乾  王坚  张琦  李恒  杜亚平 《化学学报》2022,80(4):570-580
生命从呼吸中获得氧气, 氧气再进一步在线粒体中将糖类等氧化得到能量, 提供给生命过程使用. 然而在氧化过程中, 会生成高度活泼的活性氧. 当体内控制失衡的时候, 它的浓度会大大增加, 发生氧化应激, 对机体产生不可逆的破坏, 引起衰老、肿瘤、心血管以及神经性疾病等. 抵抗活性氧的核心物质是抗氧化物, 它的存在使氧化应激受到控制, 从而保护机体免遭伤害. 本文对国内外近年来在活性氧自由基捕获方面的研究进行系统的综述, 通过梳理, 提出研究的金字塔型三级结构. 设计抗氧化物大分子与无机纳米粒子复合的纳米杂化自由基捕获器可以一方面解决无机纳米粒子的毒性问题, 另一方面还可以赋予纳米粒子额外的功能. 期待这篇综述文章能为改性纳米粒子捕捉活性氧提供一些有益思路, 为功能高分子材料与杂化纳米技术在生物医学领域的探索提供借鉴.  相似文献   

11.
建立了微流控芯片毛细管电泳激光诱导荧光同时测定细胞内活性氧和凋亡信号的方法。先用AlexaFluor488 annexin V细胞凋亡试剂盒标记细胞凋亡的外翻磷脂酰丝氨酸,再用双氢罗丹明123(DHR123)标记细胞内活性氧,用PBS将细胞调整为终密度1.2×106cells/mL的细胞悬液。细胞群经反复冻融法破碎后,以20 mmol/L硼砂(pH 9.2)作电泳缓冲溶液,分离电压1.2 kV,进样时间60 s,1 min内可完成活性氧和细胞凋亡信号的同时测定。方法简单、快速,细胞内活性氧和DHR123的反应产物(Rh123)在0.5~3μmol/L浓度范围内线性关系良好,相关系数(r)为0.998,检出限(S/N=3)为0.058μmol/L,可用于细胞内活性氧的定量分析。测得HepG2肝癌细胞活性氧含量为0.16μmol/L,被阿霉素诱导凋亡后,细胞内活性氧含量升高至1.77μmol/L。  相似文献   

12.
Sepsis, characterized by immoderate production of multiple reactive oxygen and nitrogen species (RONS), causes high morbidity and mortality. Despite progress made with nanozymes, efficient antioxidant therapy to eliminate these RONS remains challenging, owing largely to the specificity and low activity of exploited nanozymes. Herein, an enzyme-mimicking single-atom catalyst, Co/PMCS, features atomically dispersed coordinatively unsaturated active Co-porphyrin centers, which can rapidly obliterate multiple RONS to alleviate sepsis. Co/PMCS can eliminate O2.− and H2O2 by mimicking superoxide dismutase, catalase, and glutathione peroxidase, while removing .OH via the oxidative-reduction cycle, with markedly higher activity than nanozymes. It can also scavenge .NO through formation of a nitrosyl–metal complex. Eventually, it can reduce proinflammatory cytokine levels, protect organs from damage, and confer a distinct survival advantage to the infected sepsis mice.  相似文献   

13.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2S overproduction has been linked to a variety of disease states and therefore, H2S-depleting agents, such as scavengers, are needed to understand the significance of H2S-based therapy. It is known that elevated H2S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2S/H2O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2S removal. These Se-based scavengers can be useful tools for understanding H2S/ROS regulations.  相似文献   

14.
Fluorescence imaging of tyrosinase (a cancer biomarker) in living organisms is of great importance for biological studies. However, selective detection of tyrosinase remains a great challenge because current fluorescent probes that contain the 4‐hydroxyphenyl moiety show similar fluorescence responses to both tyrosinase and some reactive oxygen species (ROS), thereby suffering from ROS interference. Herein, a new tyrosinase‐recognition 3‐hydroxybenzyloxy moiety, which exhibits distinct fluorescence responses for tyrosinase and ROS, is proposed. Using the recognition moiety, we develop a near‐infrared fluorescence probe for tyrosinase activity, which effectively eliminates the interference from ROS. The high specificity of the probe was demonstrated by imaging and detecting endogenous tyrosinase activity in live cells and zebrafish and further validated by an enzyme‐linked immunosorbent assay. The probe is expected to be useful for the accurate detection of tyrosinase in complex biosystems.  相似文献   

15.
活性氧物种(ROS)在光催化选择性氧化过程中起着至关重要的作用.研究人员通过调控材料结构,优化其ROS产生的种类及浓度,可以有效提高相应光催化选择氧化反应的效率,为实现未来绿色工业搭桥铺路.本文将对常见的ROS产生过程进行解读,同时阐明其在各个催化反应中的作用机制,最后介绍不同ROS的检测和验证方法.本文可为光催化反应...  相似文献   

16.
《Analytical letters》2012,45(4):682-693
Cigarette smoke can cause cellular oxidative stress that contributes to various adverse health effects associated with smoke exposure, partially due to reactive oxygen species (ROS) present in cigarette smoke. Reduction of abundant ROS in the cigarette mainstream smoke (MSS) is of importance for human health. In this work, a simple, rapid, and reliable fluorescence evaluation of scavenging efficiency of antioxidants as potential filter additives against ROS in cigarette smoke is reported. This method was based on the combination of model glass reactor and a fluorescence assay of ROS in cigarette smoke using dihydrorhodamine 6 G (DHR-6 G). The antioxidant was added into a glass reactor attached to cigarette filter, which simplified the preparation of combined filter containing additives. The ROS scavenging efficiency of antioxidants was then determined using spectrofluorimetry by the change in fluorescence intensity of whole smoke-bubbled solutions before and after addition of antioxidants into the glass reactor. The proposed method was successfully applied to the determination of ROS scavenging efficiency of several potential additives, such as tert-butylhydroquinone (TBHQ), vitamin C, β-carotene, grape seed extract, and Ginkgo biloba extract. Moreover, the relationship between MSS ROS scavenging efficiency and antioxidant activities (DPPH radicals scavenging efficiency and Fe2+ reducing power) of these compounds was also investigated.  相似文献   

17.
Over the past several decades, nanotechnology has contributed to the progress of biomedicine, biomarker discovery, and the development of highly sensitive electroanalytical / electrochemical biosensors for in vitro and in vivo monitoring, and quantification of oxidative and nitrosative stress markers like reactive oxygen species (ROS) and reactive nitrogen species (RNS). A major source of ROS and RNS is oxidative stress in cells, which can cause many human diseases, including cancer. Therefore, the detection of local concentrations of ROS (e. g. superoxide anion radical; O2•−) and RNS (e. g. nitric oxide radical; NO and its metabolites) released from biological systems is increasingly important and needs a sophisticated detection strategy to monitor ROS and RNS in vitro and in vivo. In this review, we discuss the nanomaterials‐based ROS and RNS biosensors utilizing electrochemical techniques with emphasis on their biomedical applications.  相似文献   

18.
In this paper, the sensitization on electrochemiluminescent (ECL) reaction of luminol from reactive oxygen species (ROSs) in neutral medium was studied. The powerful sensitization from ROSs even related with organics and organisms were examined under selected conditions which were suitable for biochemical analysis. The results indicated that whether the enhancers were dissolved in solutions or immobilized on the surface of conventional electrodes, stronger ECL intensity of luminol could be obtained. Enhanced ECL helped to provide groundwork for the detection of biomolecules for which would further enhance or quench the ECL signals. The technique may provide new means in a variety of fields such as clinical diagnostics, immunological analysis and environmental monitoring due to its simplicity and high efficiency.  相似文献   

19.
电刺激是用于细胞内紊乱电活动引起疾病的一类重要治疗方式. 在电刺激过程中是否会诱导细胞内活性氧(ROS)水平的改变, 以及常规抗氧化抑制药物与电刺激治疗同时运用带来的影响, 目前尚未有相关研究. 本文设计了一种具有较好生物相容性的金/银核壳纳米棒表面增强拉曼(SERS)活性探针, 用于电刺激过程中细胞内产生ROS的检测. 将该探针与细胞共孵育, 使其内化入细胞, 对细胞进行不同时间的电刺激, 利用拉曼光谱对SERS探针的信号进行检测. 实验结果表明, 随着电刺激时间的延长, SERS信号减弱, 说明细胞内产生ROS的量明显增加. 该传感机制是利用ROS能刻蚀金/银核壳纳米棒的银壳, 从而使其变薄引起SERS信号减弱. 抗坏血酸(AA)和谷胱甘肽(GSH)两种抗氧化抑制剂类药物与电刺激同时运用时, 可观察到它们会对电刺激过程产生的ROS有清除作用. 该研究发展了一类用于细胞内ROS检测的光谱方法, 也为异常的氧化应激和肿瘤治疗过程中的组合用药提供了建议.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号