首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed N,N′‐dialkylmethylenediimidazolium salts ([CnCnDIM][X]2) that self‐organize into multilayered cationic vesicles and can interact with DNA. These preorganized systems form complexes with linear DNA and protect it from DNase I cleavage.  相似文献   

2.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

3.
Irradiation of HX (X=CF3SO3 or CF3CO2) salts of 1‐aryl‐4‐pyridylbutadienes 1 a – 1 c in the solid‐state afforded syn head‐to‐tail dimers in good yields among a number of possible dimers, whereas irradiation of the neutral substrates gave a complex mixture or no products. A comparison of the X‐ray crystal structures of the neutral compounds and the HX salts clarified that their orientation modes are head‐to‐head and head‐to‐tail, respectively. Moreover, while the distances between the two neighboring double bonds of the neutral compounds are relatively far apart from each other, those of HX salts are close together, satisfying Schmidt's requirement. These findings suggested that cation‐π interactions between the pyridinium and aromatic rings are effective for the preorientation of the HX salts of substrates, leading to photodimers in high regio‐ and stereoselectivities.  相似文献   

4.
Schiff base macrocycle 1 , which has a crown ether like central pore, was combined with different alkali‐metal and ammonium salts in chloroform, resulting in one‐dimensional supramolecular aggregates. The ion‐induced self‐assembly was studied with solid‐state NMR spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was found that the lengths and widths of the superstructures depend on the cation and counteranion of the salts. Among the salts being used, Na+ and NH4+ ions with BF4? ions showed the most impressive fibrous structures that can grow up to 1 μm in diameter and hundreds of microns in length. In addition, the size of the fibers can be controlled by the evaporation rate of the solvent. A new macrocycle with bulky triptycenyl substituents that prevent supramolecular assembly was prepared and did not display any nanofibers with alkali‐metal ions in chloroform when studied with TEM.  相似文献   

5.
A series of amino‐triazolium salts based on 4,5‐dicyano‐1,2,3‐triazolate (C4N5) anion were synthesized for first time by means of facile deprotonation reactions. The ionic compounds were characterized by single‐crystal X‐ray diffraction, vibrational spectroscopy, and elemental analysis. The thermal stability of the salts was assessed by differential scanning calorimetry, which showed good thermal stabilities up to above 180 °C. The heats of formation of these salts were computed using the methods of isodesmic reactions. In addition, the sensitivities of the studied salts toward impact and friction were determined, and all salts were found to be neither impact (> 40 J) nor friction sensitive (> 360 N).  相似文献   

6.
By employing the subcomponent self‐assembly approach utilizing 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin or its zinc(II) complex, 1H ‐4‐imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O‐symmetric cages having a confined volume of ca. 1300 Å3. The use of iron(II) salts yielded coordination cages in the high‐spin state at room temperature, manifesting spin‐crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X‐ray crystallography, high‐resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state‐of‐the‐art DFT calculations. A remarkably high‐spin‐stabilizing effect through encapsulation of C70 was observed. The spin‐transition temperature T 1/2 is lowered by 20 K in the host–guest complex.  相似文献   

7.
We have developed I2‐ or N‐iodosuccinimide (NIS)‐mediated amidiniumation of N‐alkenyl formamidines for the syntheses of cyclic formamidinium salts, some of which could be directly used as N‐heterocyclic carbene (NHC) precursors. Treatment of iodine‐containing formamidinium salts with Al2O3 led to the formation of cyclic formamidinium salts with an unsaturated backbone. A rhodium(I) complex ligated by a representative NHC was prepared by the reaction of [Rh(cod)Cl]2 (cod=1,5‐cyclooctadiene) with the free carbene obtained in situ from deprotonation of the corresponding formamidinium salts. The NHCs prepared in situ can also react with S8 to afford the corresponding thiones.  相似文献   

8.
The functionalized catecholate, tetraethyl (2,3‐dihydroxy‐1,4‐phenylene)bis(phosphonate) (H2‐DPC), has been used to prepare a series of lithium salts Li[B(DPC)(oxalato)], Li[B(DPC)2], Li[B(DPC)F2], and Li[P(DPC)3]. The phosphoryl‐rich character of these anions was designed to impart flame‐retardant properties for their use as potential flame‐retardant ions (FRIONs), additives, or replacements for other lithium salts for safer lithium‐ion batteries. The new materials were fully characterized, and the single‐crystal structures of Li[B(DPC)(oxalato)] and Li[P(DPC)3] have been determined. Thermogravimetric analysis of the four lithium salts show that they are thermally stable up to around 200 °C. Pyrolysis combustion flow calorimetry reveals that these salts produce high char yields upon combustion.  相似文献   

9.
Three new hybrid ionic liquids (ILs) based on cage silsesquioxane (SQ) were rapidly prepared in high yields from octa(mercaptopropyl)silsesquioxane and 1‐allyl‐3‐methylimidazolium salts (Br?, BF4?, PF6?) through the photochemical thiol–ene reaction. These SQ‐based ILs exhibited low glass transition temperatures and good thermal stability. The unique amphiphilic nature of these hybrid ILs cause them to self‐assemble into perfect vesicles with “yolk–shell” structures, in which cages formed the “yolk” due to their aggregation and outer anions formed the “shell”.  相似文献   

10.
The self‐organization of multicomponent supramolecular systems involving a variety of two‐dimensional (2 D) polygons and three‐dimensional (3 D) cages is presented. Nine self‐organizing systems, SS1 – SS9 , have been studied. Each involves the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self‐assembly into three to four specific 2 D (rectangular, triangular, and rhomboid) and/or 3 D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI‐MS). In all cases, the self‐organization process is directed by: 1) the geometric information encoded within the molecular subunits and 2) a thermodynamically driven dynamic self‐correction process. The result is the selective self‐assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables ‐ temperature and solvent ‐ on the self‐correction process and the fidelity of the resulting self‐organization systems is also described.  相似文献   

11.
The self‐healing of zinc‐ion batteries (ZIBs) will not only significantly improve the durability and extend the lifetime of devices, but also decrease electronic waste and economic cost. A poly(vinyl alcohol)/zinc trifluoromethanesulfonate (PVA/Zn(CF3SO3)2) hydrogel electrolyte was fabricated by a facile freeze/thaw strategy. PVA/Zn(CF3SO3)2 hydrogels possess excellent ionic conductivity and stable electrochemical performance. Such hydrogel electrolytes can autonomously self‐heal by hydrogen bonding without any external stimulus. All‐in‐one integrated ZIBs can be assembled by incorporating the cathode, separator, and anode into hydrogel matrix since the fabrication of PVA/Zn(CF3SO3)2 hydrogel is a process of converting the liquid to quasi‐solid state. The ZIBs show an outstanding self‐healing and can recover electrochemical performance completely even after several cutting/healing cycles.  相似文献   

12.
Flexible lithium‐ion batteries are critical for the next‐generation electronics. However, during the practical application, they may break under deformations such as twisting and cutting, causing their failure to work or even serious safety problems. A new family of all‐solid‐state and flexible aqueous lithium ion batteries that can self‐heal after breaking has been created by designing aligned carbon nanotube sheets loaded with LiMn2O4 and LiTi2(PO4)3 nanoparticles on a self‐healing polymer substrate as electrodes, and a new kind of lithium sulfate/sodium carboxymethylcellulose serves as both gel electrolyte and separator. The specific capacity, rate capability, and cycling performance can be well maintained after repeated cutting and self‐healing. These self‐healing batteries are demonstrated to be promising for wearable devices.  相似文献   

13.
The synthesis of alkali and alkaline earth salts of 3,3′‐diamino‐4,4′‐dinitramino‐5,5′‐bi‐1,2,4‐triazole (H2ANAT) is reported. The fast and convenient three steps reaction toward the target compounds does not require any organic solvents. In addition to an intensive characterization of all synthesized metal salts, the focus was on developing chlorine and nitrate‐free red‐light‐generating pyrotechnical formulations. Strontium 3,3′‐diamino‐4,4′‐dinitramino‐5,5′‐bitriazolate hexahydrate served as colorant and oxidizer in one molecule. The energetic properties of all developed pyrotechnical formulations assure safe handling and manufacturing.  相似文献   

14.
The new L ‐lysine alkali‐metal salts 1 – 5 (M+=Na+ and K+) with different alkyl groups at the Nα‐position were easily synthesized, and their hydro‐ and organogelation properties were investigated. All compounds were H2O‐soluble, and some salts, especially the potassium salts, functioned as a hydrogenator that could gel water below 2 wt‐%. These salts also had organogelation abilities for many organic solvents.  相似文献   

15.
A mild, metal‐free approach has been realized for the facile construction of highly valuable 3‐(hetero)aryl‐3‐hydroxy‐2‐oxindoles. Direct arylations of 3‐acyloxy‐2‐oxindoles with diaryliodonium salts as arylation reagents are implemented in the presence of K2CO3 at room temperature without using an organometallic promoter to deliver an array of 3‐(hetero)aryl‐3‐hydroxy‐2‐oxindoles in good yields.  相似文献   

16.
Density functional theory and volume‐based thermodynamics calculations were performed to study the effects of different substituents and linkages on the densities, heats of formation (HOFs), energetic properties, and thermodynamics of formation for a series of energetic nitrogen‐rich salts composed of triaminoguanidinium cation and 5‐nitroiminotetrazolate anions. The results show that the ? NO2, ? NF2, or ? N3 group is an effective substituent for increasing the densities of the 5‐nitroiminotetrazolate salts, whereas the effects of the bridge groups on the density are coupled with those of the substituents. The substitution of the group ? NH2, ? NO2, ? NF2, ? N3, or the nitrogen bridge is helpful for increasing the HOFs of the salts. The calculated energetic properties indicate that the ? NO2, ? NF2, ? N3, or ? N?N? group is an effective structural unit for improving the detonation performance for salts. The thermodynamics of formation of the salts show that all the salts may be synthesized easily by the proposed reactions. The structure‐property relationships provide basic information for the molecular design of novel high‐energy salts. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Combining experiment with theory reveals the role of self‐assembly and complexation in metal‐ion transfer through the water–oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X‐ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long‐range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu3+–3(NO3?) ion pairs involves incorporation of the “hard” metal complex into the core of “soft” aggregates. This seeds the formation of reverse micelles that draw the water and “free” amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod‐shaped polynuclear EuIII‐containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O‐donor ligands and anions, provide improved EuIII solvation environments that help drive interfacial transfer, as is reflected by the increasing EuIII partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal‐ion coordination with nanoscale structure to reveal the free‐energy balance that drives the phase transfer of neutral metal salts.  相似文献   

18.
Cyclic D,L ‐α‐peptides are able to self‐assemble to nanotubes, although the inherent reason of the stability of this kind of nanotube as well as the intrinsic driving force of self‐assembly of the cyclic D ,L ‐α‐peptides still remain elusive. In this work, using several computational approaches, we investigated the structural and energy characteristics of a series of cyclo[(‐L ‐Phe‐D ‐Ala‐)4] and cyclo[(‐L ‐Ala‐D ‐Ala‐)4] oligomers. The results reveal that the thermodynamic stability, cooperativity, and self‐assembly patterns of cyclic D ,L ‐α‐peptide nanotubes are mainly determined by the interactions between cross‐strand side chains instead of those between backbones. For cyclo[(‐L ‐Phe‐D ‐Ala‐)4] oligomers, the steric interaction between cross‐strand side chains, especially the electrostatic repulsion between the phenyls in Phe residues, brings anticooperative effect into parallel stacking mode, which is responsible for the preference of self‐assembling nanotube in antiparallel vs. parallel stacking orientation. Based on our results, a novel self‐assembling mechanism is put forward—it is the L ‐L antiparallel dimer of cyclo[(‐L ‐Phe‐D ‐Ala‐)4], instead of the commonly presumed monomer, that acts as the basic building block in self assembly. It explains why these cyclic peptides uniquely self‐assemble to form antiparallel nanotubes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
In the presence of catalytic [{IrCp*Cl2}2] and Ag2CO3, Li2CO3 as the base, and acetone as the solvent, benzoic acids react with arenediazonium salts to give the corresponding diaryl‐2‐carboxylates under mild conditions. This C? H arylation process is generally applicable to diversely substituted substrates, ranging from extremely electron‐rich to electron‐poor derivatives. The carboxylate directing group is widely available and can be removed tracelessly or employed for further derivatization. Orthogonality to halide‐based cross‐couplings is achieved by the use of diazonium salts, which can be coupled even in the presence of iodo substituents.  相似文献   

20.
This work in vestigated not only the equilibrium of self‐association of 2‐pyrrolidone (A) and that of 2‐hydroxyl‐4‐methyl‐pyridine (B), but also the hetero‐association between A and B in [2H3]acetonitrile through hydrogen bonding using high‐resolution nuclear magnetic resonance spectroscopy. Dilution shift data for the protons of the NH group of A and OH group of B were measured over a wide range of temperatures and concentrations. In addition, the monomer shifts, dimer shifts and dimerization constants of self‐association and hetero‐association were evaluated using a graphic method operating on the dilution chemical shift data. The enthalpy and entropy of dimerization of self‐association and hetero‐association were also obtained from the van't Hoff plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号