首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diphenylalanine derivative, N3‐Phe‐Phe‐NHCH2CCH, was designed for topochemical azide–alkyne cycloaddition (TAAC) polymerization. This dipeptide adopted β‐sheet arrangement as designed, in its crystals, but the azide and alkyne were not fitly aligned for their topochemical reaction. However, the voids present around these groups allowed them to attain a reactive geometry upon heating and their consequent TAAC polymerization to a pseudoprotein in a single‐crystal‐to‐single‐crystal (SCSC) fashion. This motion led to the creation of channels in the product crystal and it absorbed water from the surroundings to fill these channels as H‐bonded water wire. The pseudoprotein undergo reversible hydration/dehydration in SCSC fashion many times under mild conditions: hydration at low relative humidity and dehydration at low temperature. Vapor sorption analyses suggest that this fully organic polymer might be useful as an energy‐efficient desiccant material for controlling indoor humidity.  相似文献   

2.
Protein‐mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein‐mimics containing triazole linkages as peptide‐bond surrogate by topochemical azide‐alkyne cycloaddition (TAAC) polymerization of azide‐ and alkyne‐modified peptides. The rationally designed dipeptide N3‐CH2CO‐Phe‐NHCH2CCH ( 1 ) crystallized in a parallel β‐sheet arrangement and are head‐to‐tail aligned in a direction perpendicular to the β‐sheet‐direction. Upon heating, crystals of 1 underwent single‐crystal‐to‐single‐crystal polymerization forming a triazole‐linked pseudoprotein with Gly‐Phe‐Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical‐sheet orientation in the crystal resembles the cross‐α‐amyloids, where α‐helices are arranged laterally as sheets.  相似文献   

3.
To synthesize a fully organic 1D polymer in a novel twist‐stacked topology, we designed a peptide monomer HC≡CCH2‐NH‐Ile‐Leu‐N3, which crystallizes with its molecules H‐bonded along a six‐fold screw axis. These H‐bonded columns pack parallelly such that molecules arrange head‐to‐tail, forming linear non‐covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist‐stack along the screw axis. Crystals of this monomer, on heating, undergo single‐crystal‐to‐single‐crystal (SCSC) topochemical azide–alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4‐triazole‐linked polymer in a twist‐stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre‐decided topologies.  相似文献   

4.
The synthesis of crystalline helical polymers of trehalose via topochemical azide–alkyne cycloaddition (TAAC) of a trehalose‐based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X‐ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal‐to‐crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent‐free, catalyst‐free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution‐phase polymerization.  相似文献   

5.
There is high demand for polysaccharide-mimics as enzyme-stable substitutes for polysaccharides for various applications. Circumventing the problems associated with the solution-phase synthesis of such polymers, we report here the synthesis of a crystalline polysaccharide-mimic by topochemical polymerization. By crystal engineering, we designed a topochemically reactive crystal of a glucose-mimicking monomer decorated with azide and alkyne units. In the crystal, the monomers arrange in head-to-tail fashion with their azide and alkyne groups in a ready-to-react antiparallel geometry, suitable for their topochemical azide–alkyne cycloaddition (TAAC) reaction. On heating the crystals, these pre-organized monomer molecules undergo regiospecific TAAC polymerization, yielding 1,4-triazolyl-linked pseudopolysaccharide (pseudostarch) in a single-crystal-to-single-crystal manner. This crystalline pseudostarch shows better thermal stability than its amorphous form and many natural polysaccharides.

Prudent crystal engineering allows head-to-tail arrangement of inositol monomer molecules pre-organizing azide and alkyne units of adjacent monomers in a ready-to-react manner. On heating regiospecific SCSC polymerization yields a starch-like polymer.  相似文献   

6.
Strain developed in crystals in response to stimuli causes mechanical response. Methods to tune such mechanical response is important for practical applications. Crystals of a monomer having azide and alkyne units pre‐organized in a ready‐to‐react orientation, undergo thermal topochemical dimerization and show rate‐dependent mechanical response. When the reaction rate is fast, the crystals explode violently. When the reaction rate is slow, the crystals absorb water from the surroundings contemporaneously with the reaction to form the dimer‐hydrate in a single‐crystal‐to‐single‐crystal (SCSC) manner. Crystals of the dimer‐hydrate upon dehydration also undergo explosion. Thus, at slow reaction rate, the strain gets stored in crystals by hydration and the explosion can be harvested, at will, by dehydration. Use of this rate‐dependent explosion in the automatic activation of a remedial electrical circuit in case of a sudden rise in temperature has been demonstrated.  相似文献   

7.
There is a great deal of interest in developing stable modified nucleic acids for application in diverse fields. Phosphate‐modified DNA analogues, in which the phosphodiester group is replaced with a surrogate group, are attractive because of their high stability and resistance to nucleases. However, the scope of conventional solution or solid‐phase DNA synthesis is limited for making DNA analogues with unnatural linkages. Other limitations associated with conventional synthesis include difficulty in making larger polymers, poor yield, incomplete reaction, and difficult purification. To circumvent these problems, a single‐crystal‐to‐single‐crystal (SCSC) synthesis of a 1,5‐triazole‐linked polymeric ssDNA analogue from a modified nucleoside through topochemical azide–alkyne cycloaddition (TAAC) is reported. This is the first solvent‐free, catalyst‐free synthesis of a DNA analogue that proceeds in quantitative yield and does not require any purification.  相似文献   

8.
Two cases of spontaneous evolution of monomers to linear polymers having novel cross‐laminated topology are reported. We synthesized two peptide monomers N3‐Gly‐Gly‐NH‐CH2‐CCH and N3‐Gly‐Gly‐Gly‐CH2‐CCH and solved their crystal structures by single‐crystal X‐ray diffraction. They adopt H‐bonded crisscrossed layered packing in their crystals such that: (a) the monomers are aligned head‐to‐tail in 1D‐chain‐like arrays and parallel arrangement of such arrays forms a layer; (b) the proximally placed azide and alkyne motifs are in an orientation apt for their regiospecific cycloaddition; (c) each monomer having x peptide bonds is H‐bonded with 2x monomers disposed in intersecting arrangement, which pre‐organize 1D‐chain‐like arrays in adjacent layers in perpendicular orientation. These crystals underwent spontaneous single‐crystal‐to‐single‐crystal (SCSC) polymerization via azide–alkyne cycloaddition reaction to form triazolyl‐polyglycines, at room temperature. The crisscrossed arrangement of monomers in adjacent layers ensured the formation of cross‐laminated polymers.  相似文献   

9.
The synthesis of crystalline helical polymers of trehalose via topochemical azide–alkyne cycloaddition (TAAC) of a trehalose-based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X-ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal-to-crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent-free, catalyst-free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution-phase polymerization.  相似文献   

10.
To synthesize a fully organic 1D polymer in a novel twist-stacked topology, we designed a peptide monomer HC≡CCH2-NH-Ile-Leu-N3, which crystallizes with its molecules H-bonded along a six-fold screw axis. These H-bonded columns pack parallelly such that molecules arrange head-to-tail, forming linear non-covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist-stack along the screw axis. Crystals of this monomer, on heating, undergo single-crystal-to-single-crystal (SCSC) topochemical azide–alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4-triazole-linked polymer in a twist-stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre-decided topologies.  相似文献   

11.
Protein-mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein-mimics containing triazole linkages as peptide-bond surrogate by topochemical azide-alkyne cycloaddition (TAAC) polymerization of azide- and alkyne-modified peptides. The rationally designed dipeptide N3-CH2CO-Phe-NHCH2CCH ( 1 ) crystallized in a parallel β-sheet arrangement and are head-to-tail aligned in a direction perpendicular to the β-sheet-direction. Upon heating, crystals of 1 underwent single-crystal-to-single-crystal polymerization forming a triazole-linked pseudoprotein with Gly-Phe-Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical-sheet orientation in the crystal resembles the cross-α-amyloids, where α-helices are arranged laterally as sheets.  相似文献   

12.
A new class of attractive intermolecular interaction between azide and ethynyl structural entities in a wide range of molecular crystals is reported. This interaction was systematically evaluated by using 11 geometrically different structural motifs that are preorganized to direct a solid-state topochemical azide–alkyne cycloaddition (TAAC) reaction. The supramolecular features of the azide–alkyne interaction were mapped by various crystallographic and quantum chemical approaches. Topological analysis shows the noticeable participation of electron density in the azide⋅⋅⋅alkyne interactions. Interestingly, reorientation of the atomic polarizabilities in vicinal azide and alkyne groups upon interaction in crystals favors soft orbital-guided TAAC reactions. Moreover, various solid-state and gas-phase energy decomposition methods of individual azide⋅⋅⋅alkyne interactions summarize that the strength (varies from −5.7 to −30.1 kJ mol−1) is primarily guided by the dispersion forces with a influencing contribution from the electrostatics.  相似文献   

13.
Metal–organic frameworks (MOFs), as a class of microporous materials with well‐defined channels and rich functionalities, hold great promise for various applications. Yet the formation and crystallization processes of various MOFs with distinct topology, connectivity, and properties remain largely unclear, and the control of such processes is rather challenging. Starting from a 0D Cu coordination polyhedron, MOP‐1, we successfully unfolded it to give a new 1D‐MOF by a single‐crystal‐to‐single‐crystal (SCSC) transformation process at room temperature as confirmed by SXRD. We also monitored the continuous transformation states by FTIR and PXRD. Cu MOFs with 2D and 3D networks were also obtained from this 1D‐MOF by SCSC transformations. Furthermore, Cu MOFs with 0D, 1D, and 3D networks, MOP‐1, 1D‐MOF, and HKUST‐1, show unique performances in the kinetics of the C?H bond catalytic oxidation reaction.  相似文献   

14.
The topochemical synthesis of a miscible polymer blend is described. The azide‐ and alkyne‐decorated tetrol 1 crystallizes as two different conformers. Both conformers exhibit self‐sorted head‐to‐tail alignment with proximally placed reacting groups such that topochemical polymerization yields two types of polymer chains, each containing only one type of conformer. The orientation of complementary reactive groups in one of the head‐to‐tail‐arranged conformers favors the formation of cis‐triazole linkages, and the other favors the trans‐triazole linkages. Crystals of 1 on heating gave a perfect polymer blend containing equal amounts of cis‐triazole‐linked and trans‐triazole‐linked polymers. As each conformer is H‐bonded to four conformers of the other kind, the polymerization yields a perfect polymer blend wherein each polymer chain is surrounded by chains of the other type. Thus, the molecular ordering in the prepolymerized state in a crystal is utilized to create a polymer blend.  相似文献   

15.
Mechano‐induced single‐crystal‐to‐single‐crystal (SCSC) phase transitions in crystalline materials that change their properties have received more and more attention. However, there are still too few examples to study molecular‐level mechanisms in the mechano‐induced SCSC phase transitions, making the systematic and in‐depth understanding very difficult. We report that bis‐(8‐hydroxyquinolinato) palladium(II)‐tetracyanoquinodimethane (PdQ2‐TCNQ) and bis‐(8‐hydroxyquinolinato) copper(II)‐tetracyanoquinodimethane (CuQ2‐TCNQ) show very different mechano‐response behaviors during the SCSC phase transition. Phase transition in CuQ2‐TCNQ can be triggered by pricking on the crystal surface, while in PdQ2‐TCNQ it can only be induced by applying pressure uniformly over the whole crystal face. The crystallography data and Hirshfeld surface analysis indicate that the weak intra‐layer C?H???O, C?H???N hydrogen bonds and inter‐layer stacking interactions determine the feasibility of the SCSC phase transition by mechanical stimuli. Weaker intra‐layer interactions and looser inter‐layer stacking make the SCSC phase transition occur much more easily in the CuQ2‐TCNQ.  相似文献   

16.
There is much demand for crystalline covalent helical polymers. Inspired by the helical structure of collagen, we synthesized a covalent helical polymer wherein the repeating dipeptide Gly-Pro units are connected by triazole linkages. We synthesized an azide and alkyne-modified dipeptide monomer made up of the repeating amino acid sequence of collagen. In its crystals, the monomer molecules aligned in head-to-tail fashion with proximally placed azide and alkyne forming supramolecular helices. At 60 °C, the monomer underwent single-crystal-to-single-crystal (SCSC) topochemical azide-alkyne cycloaddition polymerization, yielding a covalent helical polymer as confirmed by single-crystal X-ray diffraction (SCXRD) analysis. Compared to the monomer crystals, the polymer single-crystals were very strong and showed three-fold increase in Young's modulus, which is higher than collagen, many synthetic polymers and other materials. The crystals of this covalent helical polymer could bear loads as high as 1.5 million times of their own weight without deformation. These crystals could also withstand high compression force and did not disintegrate even at an applied force of 98 kN. Such light-weight strong materials are in demand for various technological applications.  相似文献   

17.
The 1D complex [(CuL0.5H2O) ? H2O]n ( 1 ) (H4L=2,2′‐bipyridine‐3,3′,6,6′‐tetracarboxylic acid) undergoes an irreversible thermally triggered single‐crystal‐to‐single‐crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5]n ( 2 ). This SCSC structural transformation was confirmed by single‐crystal X‐ray diffraction analysis, thermogravimetric (TG) analysis, powder X‐ray diffraction (PXRD) patterns, variable‐temperature powder X‐ray diffraction (VT–PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2 , though the initial 1D chain is still retained as in complex 1 , accompanied with the Cu‐bound H2O removed and new O(carboxyl)?Cu bond forming, the coordination geometries around the CuII ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1‐O‐C‐O‐Cu4 bridge. The catalytic results demonstrate that, even though both solid‐state materials present high catalytic activity for the synthesis of 2‐imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2 . In addition, a possible pathway for the SCSC structural transformations is proposed.  相似文献   

18.
Using a combination of metabolically labeled glycans, a bioorthogonal copper(I)‐catalyzed azide–alkyne cycloaddition, and the controlled bleaching of fluorescent probes conjugated to azide‐ or alkyne‐tagged glycans, a sufficiently low spatial density of dye‐labeled glycans was achieved, enabling dynamic single‐molecule tracking and super‐resolution imaging of N‐linked sialic acids and O‐linked N‐acetyl galactosamine (GalNAc) on the membrane of live cells. Analysis of the trajectories of these dye‐labeled glycans in mammary cancer cells revealed constrained diffusion of both N‐ and O‐linked glycans, which was interpreted as reflecting the mobility of the glycan rather than to be caused by transient immobilization owing to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging revealed the structure of dynamic membrane nanotubes.  相似文献   

19.
Hyperbranched polymers are important soft nanomaterials but robust synthetic methods with which the polymer structures can be easily controlled have rarely been reported. For the first time, we present a one‐pot one‐batch synthesis of polytriazole‐based hyperbranched polymers with both low polydispersity and a high degree of branching (DB) using a copper‐catalyzed azide–alkyne cycloaddition (CuAAC) polymerization. The use of a trifunctional AB2 monomer that contains one alkyne and two azide groups ensures that all Cu catalysts are bound to polytriazole polymers at low monomer conversion. Subsequent CuAAC polymerization displayed the features of a “living” chain‐growth mechanism with a linear increase in molecular weight with conversion and clean chain extension for repeated monomer additions. Furthermore, the triazole group in a linear (L) monomer unit complexed CuI, which catalyzed a faster reaction of the second azide group to quickly convert the L unit into a dendritic unit, producing hyperbranched polymers with DB=0.83.  相似文献   

20.
An asymmetric bifunctional monomer having both an unprotected alkynyl group and a vinyl ether (VE) group (3‐[2‐(2‐vinyloxyethoxy)‐ethoxy]‐propyne [VEEP]) was newly designed and found that the polymerization of VEEP smoothly proceeded in a controlled manner under a living cationic polymerization condition to give alkyne‐substituted polyVE (polyVEEP) without any protection of the pendant alkynyl function. Next, the use of an initiator with a methacryloyl moiety for the living cationic polymerization of VEEP afforded macromonomer‐type polyVE (MA‐PVEEP) carrying pendant alkynyl groups. The potential ability of the resultant macromonomer as an alkyne‐substituted polymer for the copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) was also confirmed. A novel macromonomer‐type glycopolymer [MA‐P(VE‐Mal)] having pendant maltose residues and a terminal methacryloyl group was successfully synthesized by CuAAC of MA‐PVEEP with maltosyl azide. Thus, a new pathway to the controlled synthesis of macromonomer‐type glycopolymers of free from any protecting/deprotecting processes was demonstrated. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 681–688  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号