首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A liquid chromatographic chiral stationary phase based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was applied to the resolution of 15 analytes, including racemic rasagiline, a chiral drug for the treatment of Parkinson's disease, and its analogues. The composition of mobile phase was optimized to be ethanol/acetonitrile/acetic acid/triethylamine (80:20:0.2:0.3, v/v/v/v) by evaluating the chromatographic results for the resolution of five selected analytes under various mobile phase conditions. Under the optimized mobile phase conditions, racemic rasagiline was resolved quite well with a separation factor of 1.48 and resolution of 2.71 and its 14 analogues were also resolved reasonably well with separation factors of 1.06–1.54 and resolutions of 0.54–2.11. Among 15 analytes, racemic rasagiline was resolved best except for just one analyte. The analyte structure–enantioselectivity relationship indicated that racemic rasagiline has the most appropriate structural characteristics for resolution on the chiral stationary phase.  相似文献   

2.
Stereoselective electrosynthesis of the first individual (f,tA)‐ and (f,tC)‐1,4‐fullerene derivatives with a non‐inherently chiral functionalization pattern is described, as well as the first example of an optically pure protected primary amino acid directly linked to the fullerene through only the chiral α‐amino‐acid carbon atom. An application of an auxiliary chiral nickel‐Schiff base moiety as derivatizing agent allowed separation of (f,tA)‐ and (f,tC)‐1,4‐fullerene derivatives using an achiral stationary phase, a separation which has never been done before.  相似文献   

3.
A chiral stationary phase (CSP 1) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was applied to the resolution of N-(substituted benzoyl)-alpha-amino acid amides and esters. N-(Substituted benzoyl)-alpha-amino acid amides were well resolved using a mixture of acetic acid-triethylamine-acetonitrile (0.01:0.05:100, v/v/v) as an optimum mobile phase while N-(substituted benzoyl)-alpha-amino acid esters were not resolved at all. In contrast, both N-(substituted benzoyl)-alpha-amino acid amides and esters were not resolved at all or resolved very poorly on another CSP (CSP 2), which lacks the two N-H hydrogens of the amide tethers of CSP 1. Among the substituents on the benzoyl group of analytes, the nitro group was the best for good resolution of analytes on CSP 1. From these results, the two N-H hydrogens of the amide tethers of CSP 1, the carbonyl oxygen of the amide group of analytes, and the nitro group on the benzoyl group of analytes were concluded to play significant roles in chiral recognition. In addition, various N-(3,5-dinitrobenzoyl)leucine amides with different lengths of N-alkylamide chains were resolved on CSP 1 and N-(3,5-dinitrobenzoyl) leucine N-propylamide was found to show the best chiral recognition in terms of the separation (alpha = 1.30) and the resolution factor (Rs= 3.17).  相似文献   

4.
(S)‐N‐(3,5‐dinitrobenzoyl)leucine‐N‐phenyl‐N‐propylamine‐bonded silica was used as a chiral stationary phase for separation of a set of racemic π‐acidic and π‐basic α‐amino acid amides in electrolyteless ACN‐water eluents by CEC in the RP and polar organic (PO) modes. The effect of the amount of water in the ACN‐water eluent on chiral separation was examined. As water is added to ACN, retention was shortened but resolution and selectivity deteriorated severely. Retention, enantioselectivity, and resolution factors obtained in 100% ACN were compared with those in an n‐hexane‐isopropanol eluent with a small amount of water by normal phase (NP) CEC. Much shorter retention times with comparable enantioselectivities were observed with 100% ACN, demonstrating the advantage of separation on (S)‐N‐(DNB)leucine‐N‐phenyl‐N‐propylamine‐bonded silica in PO‐CEC over NP‐CEC.  相似文献   

5.
An efficient two‐step method has been developed for the separation of β‐cypermethrin stereoisomers by supercritical fluid chromatography with polysaccharide chiral stationary phases. With respect to retention, selectivity, and resolution of β‐cypermethrin, the effects of chiral stationary phases, cosolvents, mobile phases, and column temperature have been studied in detail. Through a two‐step separation, β‐cypermethrin was firstly separated by using a cellulose‐derived chiral stationary phase to obtain two stereoisomeric pairs, and further resolved on an amylose‐based chiral stationary phase to produce four enantiopure stereoisomers. The electronic circular dichroism patterns of the first‐ and the third‐eluted isomers in methanol solution showed the mirror image of each other in the wavelength range 200∼300 nm, indicating that they were a pair of enantiomers. Moreover, the second‐ and the fourth‐eluted isomers were also enantiomers. This proposed two‐step strategy showed low solvent consumption, fast separation speed, and high‐purity, which may provide an effective approach for preparative separation of compounds with multiple chiral centers and difficult‐to‐separate multicomponent samples.  相似文献   

6.
Enantioseparation of ten kinds of amino acid amide derivatives bearing aniline moieties on three polysaccharide-based chiral stationary phases (CSPs) was first systematically investigated. The chromatographic experiments were performed in the normal phase mode, namely, with n-hexane and 2-propanol as mobile phase. The effects of chiral columns, concentration of 2-propanol and column temperature on the enantioseparation were studied in detail. These compounds can be well resolved on Chiralcel OD-H column with the resolution above 1.5. Enantioseparation mechanism of chiral analytes and the CSPs are proposed based on the thermodynamic analysis of the experimental data. Our study establishes a simple, fast and efficient analytical method for amino acid amide derivatives by chiral HPLC, and provides a reference for enantioseparation of chiral amino acid amide derivatives and similar chiral compounds.  相似文献   

7.
The development and further evolution of the first catalytic asymmetric conjugate additions of azlactones as activated amino acid derivatives to enones is described. Whereas the first‐generation approach started from isolated azlactones, in the second‐generation approach the azlactones could be generated in situ starting from racemic N‐benzoylated amino acids. The third evolution stage could make use of racemic unprotected α‐amino acids to directly form highly enantioenriched and diastereomerically pure masked quaternary amino acid products bearing an additional tertiary stereocenter. The step‐economic transformations were accomplished by cooperative activation by using a robust planar chiral bis‐Pd catalyst, a Brønsted acid (HOAc or BzOH; Ac=acetyl, Bz=benzoyl), and a Brønsted base (NaOAc). In particular the second‐ and third‐generation approaches provide a rapid and divergent access to biologically interesting unnatural quaternary amino acid derivatives from inexpensive bulk chemicals. In that way highly enantioenriched acyclic α‐amino acids, α‐alkyl proline, and α‐alkyl pyroglutamic acid derivatives could be prepared in diastereomerically pure form. In addition, a unique way is presented to prepare diastereomerically pure bicyclic dipeptides in just two steps from unprotected tertiary α‐amino acids.  相似文献   

8.
A doubly tethered chiral stationary phase (CSP) containing N-CH(3 )amide linkage based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was applied to the resolution of various beta-amino acids. The chiral recognition behaviors for the resolution of beta-amino acids on the doubly tethered CSP were consistent with those on the corresponding singly tethered CSP while the chiral recognition ability of the doubly tethered CSP was generally greater in terms of both the separation (alpha) and the resolution factors (R(S)) than that of the corresponding singly tethered CSP. From these results, it was concluded that attaching the second tethering group to silica gel through a carbon atom of the first tethering group of the CSP improves the chiral recognition ability for the resolution of beta-amino acids without any change in the chiral recognition mode. The retention factors (k(1)) on the doubly tethered CSP were larger than those on the corresponding singly tethered CSP and these retention factors were found to be controllable with the variation of the type and the content of the organic and/or acidic modifier in the aqueous mobile phase without significant change in the separation and the resolution factors.  相似文献   

9.
A silica‐based chiral stationary phase (CSP) derived from L‐α‐norleucinyl‐ and pyrrolidinyl‐disubstituted cyanuric chloride was prepared for the enantioseparation of methyl esters of N‐(3,5‐dinitrobenzoyl) amino acids by high‐performance liquid chromatography. The chromatographic results show that effective enantioseparation of methyl esters of N‐(3,5‐dinitrobenzoyl)amino acids, except for proline, was achieved on this chiral stationary phase. The chromatographic resolution of racemic n‐propyl ester of N‐(3,5‐dinitrobenzoyl)valine on CSP‐B is better than that of racemic methyl ester of N‐(3,5‐dinitrobenzoyl)valine on CSP‐B or CSP‐A reported previously (J. Chromatogr. A, 676 (1994) 303). The comparison of the chromatographic results obtained in this study with those on CSP‐A reported previously reveals that steric effect, instead of hydrophobic interaction, between the n‐butyl group attached to the chiral center of the chiral selector and the alkyl group attached to the chiral center of the chiral selectand plays a significant role in chiral discrimination. The increase in the selectivity factor of methyl esters of N‐(3,5‐dinitrobenzoyl)amino acids with bulky alkyl groups was examined on CSP‐B.  相似文献   

10.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

11.
This review describes our recent works on the diastereo‐ and enantioselective synthesis of anti‐β‐hydroxy‐α‐amino acid esters using transition‐metal–chiral‐bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh),iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti‐selective asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides, yielding anti‐β‐hydroxy‐α‐amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo‐ and enantioselectivities. The Ru‐catalyzed asymmetric hydrogenation of α‐amino‐β‐ketoesters via DKR is the first example of generating anti‐β‐hydroxy‐α‐amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni–chiral‐bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α‐amino‐β‐keto ester hydrochlorides in an anti‐selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α‐aminoketones using a Ni catalyst via DKR is also described.  相似文献   

12.
An efficient method for the preparation of optically active derivatives of γ‐amino‐butenoic acids and their cyclic derivatives, 2‐amino‐pyrrolin‐4‐ones, from α‐amino acids is described. Partial racemization accompanies the formation of initial unsaturated γ‐amino‐β‐hydroxy esters 5–8 , as determined by chiral HPLC.  相似文献   

13.
RP high‐performance liquid chromatographic methods were developed for the enantioseparation of eleven unusual β2‐homoamino acids. The underivatized analytes were separated on a chiral stationary phase containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The effects of organic (alcoholic) and acidic modifiers, the mobile phase composition and temperature on the separation were investigated. The structures of the substituents in the α‐position of the analytes substantially influenced the retention and resolution. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

14.
《中国化学》2017,35(7):1037-1042
Three new chiral stationary phases (CSPs ) for high‐performance liquid chromatography were prepared from R ‐(3,3'‐halogen substituted‐1,1'‐binaphthyl)‐20‐crown‐6 (halogen = Cl, Br and I). The experimental results showed that R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6 ( CSP ‐1 ) possesses more prominent enantioselectivity than the two other halogen‐substituted crown ether derivatives. All twenty‐one α ‐amino acids have different degrees of separation on R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6‐based CSP ‐1 at room temperature. The enantioselectivity of CSP ‐1 is also better than those of some commercial R ‐(1,1'‐binaphthyl)‐20‐crown‐6 derivatives. Both the separation factors (α ) and the resolution (R s) are better than those of commercial crown ether‐based CSPs [CROWNPAK CR (+) from Daicel] under the same conditions for asparagine, threonine, proline, arginine, serine, histidine and valine, which cannot be separated by commercial CR (+). This study proves the commercial usefulness of the R ‐(3,3'‐dibromo‐1,1'‐binaphthyl)‐20‐crown‐6 chiral stationary phase.  相似文献   

15.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

16.
Two types of chiral analytes, the urea and amide derivatives of α‐phenylethylamine, were prepared. The effect of inter‐molecular hydrogen‐bonding interaction on self‐discrimination of the enantiomers of analytes has been investigated using high‐resolution 1H NMR. It was found that the urea derivatives with double‐hydrogen‐bonding interaction exhibit not only the stronger hydrogen‐bonding interaction but also better self‐recognition abilities than the amide derivatives (except for one bearing two NO2 groups). The present results suggest that double‐hydrogen‐bonding interaction promotes the self‐discrimination ability of the chiral compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Thirteen pairs of enantiomers belonging to the same structural family (phenylthiohydantoin‐amino acids) were analyzed on two polysaccharide chiral stationary phases, namely, tris‐(3,5‐dimethylphenylcarbamate) of amylose (Chiralpak AD‐H) or cellulose (Chiralcel OD‐H) in supercritical fluid chromatography with a carbon dioxide/methanol mobile phase (90:10 v/v). Five different temperatures (5, 10, 20, 30, 40°C) were applied to evaluate the thermodynamic behavior of these enantioseparations. On the cellulose stationary phase, the retention, and separation trends were most similar among the set of probe analytes, suggesting that the chiral cavities in this stationary phase have little diversity, or that all analytes accessed the same cavities. Conversely, the retention and separation trends on the amylose phase were much more diverse, and could be related to structural differences among the set of probe analytes (carbon chain length in the amino acid residue, secondary amine in proline, existence of covalent rings, or formation of pseudo‐rings via intramolecular hydrogen bonds). The large variability of behaviors on the amylose phase suggests that the chiral‐binding sites in this chiral stationary phase have more variety than on the cellulose phase, and that the analytes did access different cavities.  相似文献   

18.
The organocatalytic properties of unnatural α‐amino acids are reviewed. Post‐translational derivatives of natural α‐amino acids include 4‐hydroxy‐l ‐proline and 4‐amino‐l ‐proline scaffolds, and also proline homologues. The activity of synthetic unnatural α‐amino acid‐based organocatalysts, such as β‐alkyl alanines, alanine‐based phosphines, and tert‐leucine derivatives, are reviewed herein. The organocatalytic properties of unnatural monocyclic, bicyclic, and tricyclic proline derivatives are also reviewed. Several families of these organocatalysts permit the efficient and stereoselective synthesis of complex natural products. Most of the reviewed organocatalysts accelerate the reported reactions through covalent interactions that raise the HOMO (enamine intermediates) or lower the LUMO (iminium intermediates).  相似文献   

19.
A new reciprocal π‐basic chiral stationary phase (CSP) was designed based on the reciprocity conception of chiral recognition and prepared starting from (S)‐leucine. The CSP thus prepared was applied in resolving various π‐acidic N‐(3,5‐dinitrobenzoyl)‐α‐amino amides and esters and found to be very effective. Especially, N‐(3,5‐dinitrobenzoyl)‐α‐amino N,N‐dialkyl amides were resolved very well on the new reciprocal CSP. From the chromatographic resolution results and based on the reciprocity conception of chiral recognition with the aid of Corey/Pauling/Koltan (CPK) molecular model studies, a chiral recognition mechanism which utilizes π‐π interaction and simultaneously two hydrogen bonding interactions between the CSP and the analyte has been proposed. The CSP prepared in this study was also successful in resolving 3,5‐dinitrophenylcarbamate derivatives of 2‐hydroxycarboxylic acid esters.  相似文献   

20.
Proline and other cyclic amino acids were used as acylated acid chlorides for the resolution of enantiomers of amphentamine and related amines as diastereomers by gas chromatography. Variation of ring size or incorporation of a heteroatom into the ring of the cyclic resolving agent changed retention times and separation factors, depending on the racemic amine derivatized. Separations were achieved on a short, packed Carbowax 20M column. Because N-trifluoroacetyl L-prolyl chloride has proved especially effective for derivatization of amine enantiomers to give diastereomers which often may be resolved by gas chromatography, the proline ring was incorporated into a new optically active stationary phase. For the enantiomeric derivatives examined, the new proline ester phase gave separations essentially equivalent to those obtained on the commercially available phase, carbonyl bis-(L-valine isopropyl ester). The fact that resolution was achieved on the new phase is evidence that, as has been previously suggested, the ester carbonyls of this type of phase are the significant sites of interaction with the antipodes undergoing separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号