首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We synthesized and characterized methylammonium (MA) mixed tri‐halide tin perovskites (MASnIBr2−x Clx) for carbon‐based mesoscopic solar cells free of lead and hole‐transporting layers. Varied SnCl2/SnBr2 ratios yielded tin perovskites with three halides (I, Br, and Cl) co‐crystallized inside the tin‐perovskite. When the SnCl2 proportion was ≥50 % (x ≥1), phase separation occurred to give MASnI3−y Bry and MASnCl3−z Brz in the stoichiometric proportions of their precursors, confirmed by XRD. A device with MASnIBr1.8Cl0.2 (SnCl2=10 %) showed the best photovoltaic performance: J SC=14.0 mA cm−2, V OC=380 mV, FF=0.573, and PCE=3.1 %, and long‐term stability. Electrochemical impedance spectra (EIS) show superior charge recombination and dielectric relaxation properties for the MASnIBr1.8Cl0.2 cell. Transient PL decays showed the intrinsic problem of tin‐based perovskites with average lifetimes less than 100 ps.  相似文献   

2.
Designing and synthesizing high‐performable electron donor materials are very important for fabricating organic solar cell devices with high power conversion efficiency (PCE). In this work, quantum chemical and molecular dynamics calculations coupled with the Marcus‐Hush charge transfer model were used to investigate the photovoltaic properties of 4Cl‐BPPQ/PC61BM. Results reveal that 4Cl‐BPPQ/PC61BM system theoretically possesses a large open‐circuit voltage (1.29 V), high fill factor (0.90), and over 9% PCE. Moreover, calculations also reveal that the 4Cl‐BPPQ/PC61BM system has a middle‐sized exciton binding energy (0.492 eV), but relatively small charge‐dissociation and charge‐recombination reorganization energies (0.345 eV and 0.355 eV). Based on the 4Cl‐BPPQ/PC61BM complex, the charge‐dissociation rate constant, kdis, is estimated to be as large as 6.575×1012 s?1, while the charge‐recombination one, krec, is very small (<1.0 s?1) under the same condition due to the very small driving force (ΔGrec=?1.900 eV). In addition, by means of an amorphous cell containing one hundred 4Cl‐BPPQ molecules, the hole carrier mobility of 4Cl‐BPPQ solid is estimated as high as 3.191×10?3 cm2·V?1·s?1. In brief, our calculation shows that 4Cl‐BPPQ/PC61BM system is a very promising organic solar cell system, and is worth of making further device research by experiments.  相似文献   

3.
Despite the recent rapid development of organic solar cells (OSCs), the low dielectric constant (ϵr=3–4) of organic semiconducting materials limits their performance lower than inorganic and perovskite solar cells. In this work, we introduce oligo(ethylene glycol) (OEG) side chains into the dicyanodistyrylbenzene-based non-fullerene acceptors (NIDCS) to increase its ϵr up to 5.4. In particular, a NIDCS acceptor bearing two triethylene glycol chains (NIDCS-EO3) shows VOC as high as 1.12 V in an OSC device with a polymer donor PTB7, which is attributed to reduced exciton binding energy of the blend film. Also, the larger size grain formation with well-ordered stacking structure of the NIDCS-EO3 blend film leads to the increased charge mobility and thus to the improved charge mobility balance, resulting in higher JSC, FF, and PCE in the OSC device compared to those of a device using the hexyl chain-based NIDCS acceptor (NIDCS-HO). Finally, we fabricate NIDCS-EO3 devices with various commercial donors including P3HT, DTS-F, and PCE11 to show higher photovoltaic performance than the NIDCS-HO devices, suggesting versatility of NIDCS-EO3.  相似文献   

4.
5.
A series of simple phenothiazine‐based dyes, namely, TP , EP , TTP , ETP , and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye‐sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc=15.2 mA cm?2, Voc=0.783 V, fill factor (FF)=0.679) and 7.87 % (Jsc=16.1 mA cm?2, Voc=0.717 V, FF=0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I?/I3? redox couple. By replacing the T group with the E unit, EP ‐based DSSCs had a slightly lower PCE of 7.98 % with a higher short‐circuit photocurrent (Jsc) of 16.7 mA cm?2. The dye ETP , with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP , with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.  相似文献   

6.
Block copolymers with donor and acceptor conjugated polymer blocks provide an approach to dictating the donor–accepter interfacial structure and understanding its relationship to charge separation and photovoltaic performance. We report the preparation of a series of donor‐linker‐acceptor block copolymers with poly(3‐hexylthiophene) (P3HT) donor blocks, poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(thiophen‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (PFTBT) acceptor blocks, and varying lengths of oligo‐ethylene glycol (OEG) chains as the linkers. Morphological analysis shows that the linkers increase polymer crystallinity while a combination of optical and photovoltaic measurements shows that the insertion of a flexible spacer reduces fluorescence quenching and photovoltaic efficiencies of solution processed photovoltaic devices. Density functional theory (DFT) simulations indicate that the linking groups reduce both charge separation and recombination rates, and block copolymers with flexible linkers will likely rotate to assume a nonplanar orientation, resulting in a significant loss of overlap at the donor–linker–acceptor interface. This work provides a systematic study of the role of linker length on the photovoltaic performance of donor–linker–acceptor block copolymers and indicates that linkers should be designed to control both the electronic properties and relative orientations of conjugated polymers at the interface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1135–1143  相似文献   

7.
Recombining the advantages on photovoltaic parameters of two binary-organic photovoltaics (OPVs) into one ternary cell is an efficient strategy for selecting materials, in addition to the absorption spectra complementary among the used materials. The binary-OPVs with J71:BTP-4F-12 exhibit a power conversion efficiency (PCE) of 11.70%, along with a short-circuit-current-density (JSC) of 23.61 mA cm−2, an open-circuit-voltage (VOC) of 0.841 V and a fill factor (FF) of 58.99%. Although the relatively low PCE of 10.92% and JSC of 16.59 mA cm−2 are achieved in J71:ITIC-based binary-OPVs, the VOC of 0.935 V and FF of 70.40% are impressive compared with J71:BTP-4F-12-based OPVs. Optimal ternary-OPVs are achieved with J71:BTP-4F-12:ITIC as active layers by weight ratio of 1:0.48:0.72, delivering a markedly increased PCE of 13.05% with a VOC of 0.903 V, a JSC of 21.27 mA cm−2 and a FF of 68.20%. An over 11.5% PCE improvement is obtained by recombining the advantages of binary-OPVs into ternary-OPVs with ITIC as photon harvesting reinforcing agent and morphology regulator. The good compatibility between BTP-4F-12 and ITIC provides large room to well optimize their relative content for achieving the well balanced three key photovoltaic parameters of ternary-OPVs.  相似文献   

8.
Silole‐containing conjugated polymers ( P1 and P2 ) carrying methyl and octyl substituents, respectively, on the silicon atom were synthesized by Suzuki polycondensation. They show strong absorption in the region of 300–700 nm with a band gap of about 1.9 eV. The two silole‐containing conjugated polymers were used to fabricate polymer solar cells by blending with PC61BM and PC71BM as the active layer. The best performance of photovoltaic devices based on P1 /PC71BM active layer exhibited power conversion efficiency (PCE) of 2.72%, whereas that of the photovoltaic cells fabricated with P2 /PC71BM exhibited PCE of 5.08%. 1,8‐Diiodooctane was used as an additive to adjust the morphology of the active layer during the device optimization. PCE of devices based on P2 /PC71BM was further improved to 6.05% when a TiOx layer was used as a hole‐blocking layer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
To exploit an effective way to improve polymeric photovoltaic performance, a series of dithiophene‐benzothiadiazole‐alt‐fluorene copolymers containing carbazole groups at C‐9 positions of the alternating fluorene units (PFO‐FCz‐DBT) were synthesized and characterized. The effect of the carbazole groups on the optophysical, electrochemical, and photovoltaic properties of these copolymers was investigated. By comparison, this type of copolymers with carbazole units exhibited significantly improved photovoltaic properties than poly(2,7‐(9,9‐dioctyl‐fluorene)‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PFO‐DBT) in the bulk heterojunction solar cells. A maximum power‐conversion efficiency (PCE) of 2.41% and a highest short‐circuit current density (Jsc) of 9.68 mA cm?2 were obtained for the PFO‐FCz‐DBT30, which are about two times higher than the corresponding levels for the PFO‐DBT30. This work demonstrated that introducing a hole‐transporting carbazole unit into copolymer is a simple and effective method to improve the Jsc and PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A general and convenient strategy is proposed for enhancing photovoltaic performance of aqueous dye‐sensitized solar cells (DSCs) through the surface modification of titania using an organic alkyl silane. Introduction of octadecyltrichlorosilane on the surface of dyed titania photoanode as an organic barrier layer leads to the efficient suppression of electron recombination with oxidized cobalt species by restricting access of the cobalt redox couple to the titania surface. The champion ODTS‐treated aqueous DSCs (0.25 mM ODTS in hexane for 5 min) exhibit a Voc of 821±4 mV and Jsc of 10.17±0.21 mA cm?2, yielding a record PCE of 5.64±0.10 %. This surface treatment thus serves as a promising post‐dye strategy for improving the photovoltaic performance of other aqueous DSCs.  相似文献   

11.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

12.
Dye‐sensitized solar cells (DSSCs) based on CuII/I bipyridyl or phenanthroline complexes as redox shuttles have achieved very high open‐circuit voltages (VOC, more than 1 V). However, their short‐circuit photocurrent density (JSC) has remained modest. Increasing the JSC is expected to extend the spectral response of sensitizers to the red or NIR region while maintaining efficient electron injection in the mesoscopic TiO2 film and fast regeneration by the CuI complex. Herein, we report two new D‐A‐π‐A‐featured sensitizers termed HY63 and HY64 , which employ benzothiadiazole (BT) or phenanthrene‐fused‐quinoxaline (PFQ), respectively, as the auxiliary electron‐withdrawing acceptor moiety. Despite their very similar energy levels and absorption onsets, HY64 ‐based DSSCs outperform their HY63 counterparts, achieving a power conversion efficiency (PCE) of 12.5 %. PFQ is superior to BT in reducing charge recombination resulting in the near‐quantitative collection of photogenerated charge carriers.  相似文献   

13.
A class of the 9,9‐dioctylfluorene‐alt‐5,7‐bis(thiophen‐2‐yl)‐2,3‐biphenylthieno [3,4‐b]pyrazine copolymeric derivatives (PFO‐3ThPz‐D) attaching additional donor (D) units in the pendant phenyl ring with a D‐A D structure was synthesized and investigated, where the additional D unit is a substituent group of fluorene, carbazole, and triphenylamine (Tpa). Their photovoltaic properties were significantly tuned by these pending donor units. Among these copolymers, the PFO‐3ThPz‐Tpa exhibited the best photovoltaic properties in the bulk heterojunction polymeric solar cells (BHJ‐PSC). The maximum power conversion efficiency (PCE) of 2.09% and the highest circuit current density (Jsc) of 7.91 mA/cm2 were obtained in the cell using a blend of PFO‐3ThPz‐Tpa and PC60BM (1:3, w/w) as active layer, which are 2.5 and 1.8 times higher than those corresponding levels in the other cell using the parent PFO‐3ThPz‐Ph copolymer instead of PFO‐3ThPz‐Tpa as donor, respectively. While PC60BM was replaced by PC70BM, the PFO‐3ThPz‐Tpa‐based BHJ‐PSC exhibited better photovoltaic properties with PCE of 3.08% and Jsc of 10.3 mA/cm2. This work demonstrated that attaching donor units into the D‐A‐based copolymeric side‐chain is a simple and effective method to improve the photovoltaic properties for the resulting copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
One of the most important challenges that hinders the power conversion efficiencies (PCEs) of organic solar cells (OSCs) is the modest open‐circuit voltages (VOC) due to large energy losses. The large driving force during for charge generation and the non‐radiative recombination are the main causes of energy losses. To maximize the VOC of OSCs, herein, we modulate the end‐groups and design a non‐fullerene acceptor ITCCM‐O, which shows a bandgap of 2.0 eV. By blending a polymer donor named J52, the device demonstrates a PCE of 5.5% with an outstanding VOC of 1.34 V, which is the highest value for single‐junction OSCs over 5% PCEs. The high VOC is benefited from 1) the negligible driving force for charge transfer, and 2) the suppressed non‐radiative recombination loss, as low as 0.22 V.  相似文献   

15.
Compared with benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (BTT), an extended π‐conjugation fused ring derivative, dithieno[2,3‐d:2′,3′‐d′]benzo[1,2‐b:3,4‐b′:5,6‐d″]trithiophene (DTBTT) has been designed and synthesized successfully. For investigating the effect of extending conjugation, two wide‐bandgap (WBG) benzo[1,2‐b:4,5‐b′]dithiophene (BDT)‐based conjugated polymers (CPs), PBDT‐DTBTT, and PBDT‐BTT, which were coupled between alkylthienyl‐substituted benzo[1,2‐b:4,5‐b′]dithiophene bistin (BDT‐TSn) and the weaker electron‐deficient dibromides DTBTTBr2 and BTTBr2 bearing alkylacyl group, were prepared. The comparison result revealed that the extending of conjugated length and enlarging of conjugated planarity in DTBTT unit endowed the polymer with a wider and stronger absorption, more ordered molecular structure, more planar and larger molecular configuration, and thus higher hole mobility in spite of raised highest occupied molecular orbital (HOMO) energy level. The best photovoltaic devices exhibited that PBDT‐DTBTT/PC71BM showed the power conversion efficiency (PCE) of 2.73% with an open‐circuit voltage (VOC) of 0.82 V, short‐circuit current density (JSC) of 6.29 mA cm?2, and fill factor (FF) of 52.45%, whereas control PBDT‐BTT/PC71BM exhibited a PCE of 1.98% under the same experimental conditions. The 38% enhanced PCE was mainly benefited from improved absorption, and enhanced hole mobility after the conjugated system was extended from BTT to DTBTT. Therefore, our results demonstrated that extending the π‐conjugated system of donor polymer backbone was an effective strategy of tuning optical electronic property and promoting the photovoltaic property in design of WBG donor materials.  相似文献   

16.
Two donor‐π‐acceptor (D‐π‐A) type naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole (NT)‐based conjugated copolymers (CPs), namely, PBDT‐TT‐DTNT‐HD and PBDT‐TT‐DTNT‐OD, containing different side chain length (2‐hexyldecyl, HD and 2‐octyldodecyl, OD) anchoring to thiophene π‐bridge between the two‐dimensional (2D) 5‐((2‐butyloctyl)thieno[3,2‐b]thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐TT) unit and NT moiety are developed and fully characterized. The resultant two copolymers exhibited broader absorption in wide range of 300–820 nm and obviously deepened EHOMO of approximately −5.50 eV. The effects of side chain length on film‐forming ability, absorption, energy levels, aggregation, dielectric constant (ɛr), mobility, morphology, and photovoltaic properties are further systematically investigated. It was found that the side chain length had little impact on solution‐processability, absorption, energy levels, and aggregation in CB solution of resultant CPs. However, tinily increasing side chain length promoted to form the more ordered structure of neat polymer film even if the corresponding ɛr decreased. As a result, the side‐chain‐extended PBDT‐TT‐DTNT‐OD:PC71BM‐based device achieved 32% increased FF than that of PBDT‐TT‐DTNT‐HD:PC71BM and thus the PCE was significantly raised from 3.99% to 5.21%, which were benefited from 2 times higher SCLC hole mobility, more favorable phase separation, and improved exciton dissociation. These findings could provide an important and valuable insight by side chain modulation for achieving efficient PSCs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2059–2071  相似文献   

17.
Donor–acceptor (D–A) conjugated polymers bearing non‐covalent configurationally locked backbones have a high potential to be good photovoltaic materials. Since 1,4‐dithienyl‐2,5‐dialkoxybenzene ( TBT ) is a typical moiety possessing intramolecular S…O interactions and thus a restricted planar configuration, it was used in this work as an electron‐donating unit to combine with the following electron‐accepting units: 3‐fluorothieno[3,4‐b]thiophene ( TFT ), thieno‐[3,4‐c]pyrrole‐4,6‐dione ( TPD ), and diketopyrrolopyrrole ( DPP ) for the construction of such D–A conjugated polymers. Therefore, the so‐designed three polymers, PTBTTFT , PTBTTPD , and PTBTDPP , were synthesized and investigated on their basic optoelectronic properties in detail. Moreover, using [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as acceptor material, polymer solar cells (PSCs) were fabricated for studying photovoltaic performances of these polymers. It was found that the optimized PTBTTPD cell gave the best performance with a power conversion efficiency (PCE) of 4.49%, while that of PTBTTFT displayed the poorest one (PCE = 1.96%). The good photovoltaic behaviors of PTBTTPD come from its lowest‐lying energy level of the highest occupied molecular orbital (HOMO) among the three polymers, and good hole mobility and favorable morphology for its PC71BM‐blended film. Although PTBTDPP displayed the widest absorption spectrum, the largest hole mobility, and regular chain packing structure when blended with PC71BM, its unmatched HOMO energy level and disfavored blend film morphology finally limited its solar cell performance to a moderate level (PCE: 3.91%). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 689–698  相似文献   

18.
We describe the successful synthesis of four novel donor‐acceptor (D‐A) type copolymers, referred to as PQxBT , PQxFBT , TQxBT , and TQxFBT . The effects of using a fluorinated bithiophene (FBT) and varying the side‐chain moieties tethered to the quinoxaline (Qx) unit (electron‐withdrawing group in the polymer backbone) on the physical properties and photovoltaic performance were investigated. Specifically, the four polymers were synthesized using either alkoxyphenyl (P) or alkylthiophene (T) units anchored to the quinoxaline in the polymer backbone. The FBT‐bearing polymers, PQxFBT and TQxFBT , displayed more redshifted absorption spectra and higher crystallinity owing to the greater planarity of their polymer backbone as compared to the non‐fluorinated polymers. The TQxFBT copolymer, equipped with both the alkylthiophene side chains and FBT, exhibited face‐on orientation in film state and a well‐mixed nanophase morphology in TQxFBT :PC71BM blend films. The photovoltaic device fabricated from TQxFBT :PC71BM exhibited the highest power conversion efficiency of 4.18%. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1209–1218  相似文献   

19.
Understanding photoinduced charge separation in fullerene‐based dye‐sensitized solar cells is crucial for the development of photovoltaic devices. We investigate here how the driving force of the charge separation process in conjugates of M@C80 (M=Sc3N, Sc3CH, Sc3NC, Sc4O2, and Sc4O3) with triphenylamine (TPA) depends on the nature of the metal cluster. Both singlet and triplet excited‐state electron‐transfer reactions are considered. These results based on TD‐DFT calculations demonstrate that the driving force of charge separation in TPA‐M@C80 can be tuned well by varying the structure of the metal cluster encapsulated inside the fullerene cage.  相似文献   

20.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号