首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
A class‐specific macrolide molecularly imprinted polymer was synthesized by precipitation polymerization using tulathromycin as the template and methacrylic acid as the functional monomer. The polymers revealed different specific adsorption and imprinting factor for macrolides with different spatial arrangement of side chains as well as lactonic ring size. And the molecularly imprinted polymer possessed maximum adsorption capacity (54.1 mg/g) and highest imprinting factor (2.4) toward 15‐membered ring azithromycin. On the basis of molecularly imprinted polymer dispersive solid‐phase extraction, a rapid, selective, and reproducible method for simultaneous determination of seven macrolide antibiotics residues in pork was established by using liquid chromatography with tandem mass spectrometry. At spiking levels of 5, 10, 25, and 100 μg/kg, average recoveries of seven macrolides ranged from 68.6 to 95.5% with intraday and interday relative standard deviations below 8%. The limits of detection and limits of quantification were 0.2–0.5 and 0.5–2.0 μg/kg, respectively.  相似文献   

2.
A new simple and rapid pretreatment method for simultaneous determination of 19 sulfonamides in pork samples was developed through combining the QuEChERS method with dispersive liquid–liquid microextraction followed by ultra‐high performance liquid chromatography with tandem mass spectrometry. The sample preparation involves extraction/partitioning with QuEChERS method followed by dispersive liquid–liquid microextraction using tetrachloroethane as extractive solvent and the acetonitrile extract as dispersive solvent that obtained by QuEChERS. The enriched tetrachloroethane organic phase by dispersive liquid–liquid microextraction was evaporated, reconstituted with 100 μL acetonitrile/water (1:9 v/v) and injected into an ultra‐high performance liquid chromatography with a mobile phase composed of acetonitrile and 0.1% v/v formic acid under gradient elution and separated using a BHE C18 column. Various parameters affecting the extraction efficiency were investigated. Matrix‐matched calibration curves were established. Good linear relationships were obtained for all analytes in a range of 2.0–100 μg/kg and the limits of detection were 0.04–0.49 μg/kg. Average recoveries at three spiking levels were in the range of 78.3–106.1% with relative standard deviations less than 12.7% (n = 6). The developed method was successfully applied to determine sulfonamide residues in pork samples.  相似文献   

3.
A novel design for a rapid clean‐up method was developed for the analysis of pesticide residues in fruit and vegetables followed by LC–ESI‐MS/MS. The acetonitrile‐based sample extraction technique was used to obtain the extracts, and further clean‐up was carried out by applying the streamlined procedure on a multiplug filtration clean‐up column coupled with a syringe. The sorbent used for clean‐up in this research is multiwalled carbon nanotubes, which was mixed with anhydrous magnesium sulfate to remove water from the extracts. This method was validated on 40 representative pesticides and apple, cabbage, and potato sample matrices spiked at two concentration levels of 10 and 100 μg/kg. It exhibited recoveries between 71 and 117% for most pesticides with RSDs < 15%. Matrix‐matched calibrations were performed with the coefficients of determination >0.995 for most studied pesticides between concentration levels of 10–500 μg/L. The LOQs for 40 pesticides ranged from 2 to 50 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market fruit and vegetable samples.  相似文献   

4.
A multiresidue method for the determination of 12 glucocorticoids (clobetasol propionate, budesonide, triamcinolone, triamcinolone acetonide, fludrocortisone acetate, flumethasone, beclomethasone, prednisone acetate, 6‐α‐methylprednisolone, hydrocortisone, cortisone, and prednisone) in bovine milk was developed using liquid chromatography with tandem mass spectrometry. Isoflupredone was used as an internal standard. Milk samples were treated with ethyl acetate to extract glucocorticoids and were frozen at −20°C for 6 h to precipitate fat. The extract was dried under nitrogen, and residues were dissolved in an acetonitrile/water solution. A further clean‐up step was used by dispersive solid‐phase extraction, with octadecyl silica and primary secondary amine as the absorbents. The recoveries of glucocorticoids spiked at 0.5, 1.0, 10.0 μg/kg ranged from 75.7 to 117.3%, except for clobetasol propionate and budesonide (16.1–49.5%). The limits of quantification were 0.01–0.5 μg/kg in milk. This method has been successfully applied in real samples. The results demonstrated that this method is simple, robust, and suitable for identification of glucocorticoid residues in milk.  相似文献   

5.
《Electrophoresis》2017,38(16):2004-2010
A nonaqueous micellar electrokinetic capillary chromatography method with indirect LIF was developed for the determination of strobilurin fungicide residues in fruits and vegetables. Hydrophobic CdTe quantum dots (QDs) synthesized in aqueous phase were used as background fluorescent substance. The BGE solution, QD concentration, and separation voltage were optimized to obtain the best separation efficiency and the highest signal intensity. The optimal BGE solution consists of 40 mM phosphate, 120 mM sodium dodecyl sulfate, 15% v/v water and 15% v/v hydrophobic CdTe QDs in formamide, of which apparent pH is 9.5. The optimized separation voltage is controlled as 25 kV. The resultant detection limits of azoxystrobin, kresoxim‐methyl, and pyraclostrobin are all 0.001 mg/kg, their linear dynamic ranges are 0.005–2.5 mg/kg, and the recoveries of the spiked samples are 81.7–96.1%, 86.5–95.7%, and 87.3–97.4%, respectively. This method has been proved to be sensitive enough to detect the aforementioned fungicides in fruits and vegetables at the maximum residue limits.  相似文献   

6.
Detecting pesticide residues in human serum is a challenging process. In this study we developed and validated a method for the extraction and recovery of residues of multiple classes of pesticides from serum using one reagent. Salt‐assisted acetonitrile extraction and high‐performance liquid chromatography with quadrupole time of flight tandem mass spectrometry were used to quantitate 34 pesticides classified in nine groups of chemicals in human serum samples, which are frequently detected in food. The recoveries for 33 of analyzed pesticides ranged from 86 to 112% with relative standard deviations below 15%. The limits of quantitation and linearity of 31 of the pesticides were 1 µg/L and >0.990, respectively. The lower limit of quantitation has been reported in the literature particularly for multi‐classes pesticide mixtures in human serum. The salt–acetonitrile reagent was allowed to achieve good recoveries and detection limits, which could be attributed to salt altering the solvent polarity, preferentially collecting the organic phase in the solution, and promoting the extraction. The developed method was applied for two organophosphate pesticide metabolites, diethylphosphate and 3,5,6‐trichloro‐2‐pyridinol, in serum from rats that were fed a nonlethal quantity of chlorpyrifos. The concentrations of these two were 252.18 ± 15.47 and 0.63 ± 0.23 µg/L, respectively.  相似文献   

7.
A syringe‐dispersive solid‐phase extraction method was developed for the determination of seven nitroimidazoles and nine steroids in manure‐based fertilizers by ultra‐high performance liquid chromatography with tandem mass spectrometry. Methanol and acetonitrile were used to extract the sample, and mixed dispersive sorbents dispersed in the syringe were used for purification. The extract was separated with an HSS‐T3 column and detected in positive or negative multiple reaction monitoring mode. Under the optimal conditions, the recoveries of the 16 compounds ranged from 70.3 to 112.3% at the four spiked levels (3, 10, 20, and 50 μg/kg) and the relative standard deviations ranged from 1.0 to 12.4%. The limits of detection and quantification were 0.22–0.86 and 0.73–2.87 μg/kg, respectively. This method is simple, fast, and reliable, and can be used to simultaneously screen and determine nitroimidazoles and steroids in manure‐based fertilizers.  相似文献   

8.
A rapid, reliable, and sensitive method is reported for the simultaneous analysis of pyrifluquinazon and its main metabolite NNI‐0101‐1H in fruits (strawberry and cherry) and vegetables (cucumber and tomato) using high‐performance liquid chromatography coupled with tandem mass spectrometry. A modified, quick, easy, cheap, effective, rugged, and safe procedure was used for the sample pre‐preparation. The target analytes were extracted with acetonitrile and then cleaned up using dispersive solid‐phase extraction procedure with primary secondary amine. Sample analysis was performed using electrospray ionization in positive mode. Good linearities with the correlation coefficients higher than 0.9991 were obtained in the range of 1–1000 μg/L under the optimized conditions. The average recoveries of the pyrifluquinazon and NNI‐0101‐1H were in the range of 71.4–106.0% with the relative standard deviations 1.8–11.8% in all matrices at three spiked levels (10, 100, and 1000 μg/kg). The limit of quantification 10 μg/kg was set as the lowest spiked level. The developed method is reliable and effective for the routine monitoring of pyrifluquinazon and its metabolite NNI‐0101‐1H in fruits and vegetables to ensure food safety.  相似文献   

9.
Carbon nanotubes‐magnetic nanoparticles, comprising ferroferric oxide nanoparticles and carbon nanotubes, were prepared through a simple one‐step synthesis method and subsequently applied to magnetic solid‐phase extraction for the determination of polyether antibiotic and s‐triazine drug residues in animal food coupled with liquid chromatography with tandem mass spectrometry. The nanocomposites were characterized by transmission electron microscopy, X‐ray diffraction, and vibrating sample magnetometry. The components within the nanocomposites endowed the material with high extraction performance and manipulative convenience. Compared with carbon nanotubes, the as‐prepared carbon nanotubes‐magnetic nanoparticles showed better extraction and separation efficiencies for polyether antibiotics and s‐triazine drugs thanks to the contribution of the iron‐containing magnetic nanoparticles. Various experimental parameters affecting the extraction efficiency had been investigated in detail. Under the optimal conditions, the good linearity ranging from 1 to 200 μg/kg for diclazuril, toltrazuril, toltrazuril sulfone, lasalocid, monensin, salinomycin, narasin, nanchangmycin, and maduramicin, low limits of detection ranging from 1 to 5 μg/kg, and satisfactory spiked recoveries (77.1–91.2%, with the inter relative standard deviation values from 4.0 to 12.2%) were shown. It was confirmed that this novel method was an efficient pretreatment and enrichment procedure and could be successfully applied for extraction and determination of polyether and s‐triazine drug residues in complex matrices.  相似文献   

10.
A facile and sensitive multi‐residue detection approach of pressurized liquid extraction following high‐performance liquid chromatography tandem mass spectrometry was established to detect the residues of adrenergic drugs, steroids, sedative, colorant and antioxidant in feed. The conditions employed for pressurized liquid extraction involved acetonitrile/ethyl acetate (1:1, v/v) as the extracting solvent, the temperature 80°C, two cycles and a static time of 10 min. The extraction was followed by a solid‐phase extraction clean‐up step. The separation of samples was done by C18 column with the mobile phase of 5 mM ammonium acetate solution and acetonitrile with 0.1% formic acid. The limits of quantification ranged from 0.03 to 1 μg/kg, limits of detection were in a range of 0.01–0.5 μg/kg, and average recoveries were 70.4–98.6%. The pressurized liquid extraction procedure was optimized and overall method was validated in terms of sensitivity, linearity, selectivity, matrix effect, accuracy, recovery and stability of the target drugs in the pressurized liquid extraction extracts solution. The screening method was proved to be fast, selective, accurate and sensitive for screening drugs.  相似文献   

11.
A new analytical method for multiresidue determination of 16 multiclass pesticides in lettuce was developed using ultra‐high performance liquid chromatography with tandem mass spectrometry with a triple quadrupole mass analyzer and positive mode electrospray ionization, using a previously optimized quick, easy, cheap, effective, rugged, and safe method for sample preparation. Validation studies, according to document SANTE/11945/2015, demonstrated that the developed method is selective, accurate, and precise, providing recoveries of 70–120%, relative standard deviations ≤20% and quantification limits from 3 μg/kg. The method was compared with one based on high‐performance liquid chromatography with tandem mass spectrometry, in terms of chromatographic performance, detectability and matrix effect for five varieties of lettuce. The new method provided a reduction in the time for the chromatographic analysis of 50%, from 30 to 15 min, using a lower mobile phase flow rate (0.147 mL/min), which reduced the consumption of mobile phase by 25%, and injection of smaller amounts of sample (1.7 μL). Lower limits of quantification were obtained for almost all pesticides studied for green‐leaf lettuce. However, in relation to the matrix effect, four of the five types of lettuce studied presented higher matrix effects.  相似文献   

12.
A high‐throughput method based on ultrasonic‐assisted extraction, 96‐well plate thin‐film microextraction was established to determinate 18 antibiotics in animal feed. In this method, the extraction was implemented by ultrasonic‐assisted extraction for 30 min with disodium ethylenediaminetetraacetic acid‐McIlvaine buffer (pH 5) containing 6% sodium chloride w/v, purified by thin‐film microextraction and combined with 96‐well plate system to improve the efficiency. Optimization of thin‐film microextraction conditions was performed by methods of single factor and response surface, and finalized as: condition time: 20 min; adsorption time: 55 min; washing time: 5 s with water; desorption time: 30 min with acetonitrile/water (8:2, v/v) containing 0.1% formic acid v/v. Evaluation of different extractive phases showed that polystyrene‐divinylbenzene‐polyacrylonitrile was the optimum coating. The analysis was performed by ultra‐high performance liquid chromatography with tandem mass spectrometry. Recovery, inter‐ and intraday precision, linearity, limit of detection, and quantitation were evaluated. The average recoveries of 18 antibiotics were 66.6–93.5% at three spiked levels, intraday precision was 1–8.4%, and interday precision was 3.0–16.4%. The linearity was good for r> 0.99. Limits of detection and quantification were found in the range of 1–14 and 4–48 µg/kg, respectively.  相似文献   

13.
Moxidectin (MOX) has recently been approved by the US Food and Drug Administration for the treatment of river blindness in select populations. It is also being evaluated as an alternative for the use of ivermectin, widespread resistance to which is becoming a global health issue. Moreover, MOX is becoming increasingly used as a prophylactic antiparasitic in the cattle industry. In this study, we developed and validated an LC–MS/MS method of MOX in human, monkey and mouse plasma. The separation was achieved on an ACE C18 (50 × 3.0 mm, 3 μm) column with isocratic elution using 0.1% acetic acid and methanol–acetonitrile (1:1, v/v) as mobile phase. MOX was quantitated using MS/MS with an electrospray ionization source operating in negative multiple reaction monitoring mode. The multiple reaction monitoring precursor ion → product ion transitions for MOX and abamectin (IS) were m/z 638.40 → 236.30 and m/z 871.50 → 565.35 respectively. The MS/MS response was linear over the concentration range 0.1–1000 ng/mL in plasma with a correlation coefficient (r2) of 0.997 or better. The within‐ and between‐day precision (relative standard deviation, RSD) and accuracy were within the acceptable limits per US Food and Drug Administration guidelines. The method was successfully applied to an in vitro metabolic stability study of MOX.  相似文献   

14.
p‐Cresol sulfate (pCS) and indoxyl sulfate (IS) are protein‐bound uremic toxins that accumulate in patients with chronic kidney disease (CKD). They are closely associated with the mortality rate of CKD and morbidity of cardiovascular disease. In the present study, we established a rapid method for determination of pCS and IS by HPLC‐MS/MS in serum samples from 205 CKD patients undergoing peritoneal dialysis. In brief, serum was extracted by acetonitrile and spiked with hydrochlorothiazide. The prepared sample was eluted through HPLC column (Agilent Zorbax SB‐C18, 3.5 μm, 2.1 × 100 mm) with a mobile phase of acetonitrile and 10 mm ammonium acetate solution (10:90, v/v) for subsequent detection of pCS and IS by MS/MS. The linearity ranged from 50 to 10,000 ng/mL for pCS (r > 0.99), and from 500 to 10,000 ng/mL for IS (r > 0.99). The lower limit of quantification was 50 ng/mL for pCS, and 500 ng/mL for IS. Relative standard deviation (RSD) of intra‐ and inter‐day precision was within ±15%. The results showed that pCS and IS levels were partially correlated with renal function in CKD patients, and IS was directly related to serum creatinine and estimated glomerular filtration rate.  相似文献   

15.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

16.
In this study, a magnetic metal–organic framework was synthesized simply and utilized in the dispersive magnetic solid‐phase extraction of five phthalate esters followed by their determination by gas chromatography with mass spectrometry. First, MIL‐101(Cr) was prepared hydrothermally in water medium without using highly corrosive hydrofluoric acid, utilizing an autoclave oven heat supply. Afterward, Fe3O4 nanoparticles were decorated into the matrix of MIL‐101(Cr) to fabricate magnetic MIL‐101 nanocomposite. The nanocomposite was characterized by various techniques. The parameters affecting dispersive magnetic solid‐phase extraction efficiency were optimized and obtained as: a sorbent amount of 15 mg; a sorption time of 20 min; an elution time of 5 min; NaCl concentration, 10% w/v; type and volume of the eluent 1 mL n‐hexane/acetone (1:1 v/v). Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.08–0.15 and 0.5–200 μg/L, respectively. The intra‐ and interday RSD% values were obtained in the range of 2.5–9.5 and 4.6–10.4, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of the model analytes in water samples, and human plasma in the range of microgram per liter and satisfactory results were obtained.  相似文献   

17.
The present study was carried out to determine 16 antibiotics belonging to seven different groups (tetracyclines, sulfonamides, penicillins, fluoroquinolones, macrolides, lincosamides and trimethoprims) in duck meat. A solid‐phase extraction method based on Oasis HLB cartridges coupled with liquid chromatography–electrospray ionization tandem mass spectrometry was developed. Solutions of 0.1 m ethylenediaminetetraacetic acid disodium salt and 2% trifluoroacetic acid were used for the preliminary extraction of the target antibiotics from duck meat and n‐hexane was used for purification prior to solid‐phase extraction. Mobile phases composed of 0.1% trifluoroacetic acid in distilled water (solvent A) and 0.1% trifluoroacetic acid in methanol (solvent B), combined with a reversed‐phase C18 analytical column, provided the optimal separation and signal intensity. The linearity of the method was assessed using six concentrations (5, 10, 20, 30, 40, and 50 μg/kg), and the recoveries, which were calculated at three spiking concentrations (5, 10 and 20 μg/kg), were in the range 69.8–103.3% with relative standard deviations (RSDs) ≤ 6.9% for the 16 tested antibiotics. Matrix effects ranging from ?47.2 to ?13.5% were observed for all the analytes, and the limits of quantitation (LOQ), which ranged from 4.93 to 26.21 μg/kg, were much lower than the maximum residue limits (MRLs) set by various regulatory authorities. Ten samples from a market were tested, and none of the target analytes were detected. Thus, a simple and versatile protocol has been developed to detect and quantify 16 antibiotics in duck meat samples.  相似文献   

18.
A high‐performance liquid chromatographic method was developed for the analysis of 3'‐hydroxypterostilbene. This method involves the use of a Luna® C18 column with ultraviolet detection at 325 nm. The mobile phase consisted of acetonitrile, water and formic acid (50:50:0.01, v/v/v) with a flow rate of 0.8 mL/min. The calibration curves were linear over the range 0.5–100.0 µg/mL. The mean extraction efficiency was between 97.40 and 111.16%. The precision of the assay was 0.196–14.39% (RSD%), and within 15% at the limit of quantitation (0.5 µg/mL). The bias of the assay was <16% and within 15% at the limit of quantitation. This assay was successfully applied to pre‐clinical pharmacokinetic samples from rat urine and serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A new analytical method based on dispersive liquid–liquid microextraction with gas chromatography mass spectrometry has been optimized for the simultaneous determination of paclobutrazol and triflumizole in tap water and wastewater samples. A two‐level, full‐factorial design that allowed the study of main effects and factor interactions was applied to analyze the influence on microextraction process by chloroform, ethanol, potassium iodide and hand shaking period. The extraction conditions selected were 200 μL of chloroform, 3.0 mL of ethanol, 2.0 g of potassium iodide and 15 s of hand shaking. The limits of detection obtained for triflumizole and paclobutrazol under optimum conditions were 0.97 and 0.29 ng/mL, respectively. Calibration plots of both analytes were linear over a wide concentration range, and good precision was observed for replicate measurements. Applicability and accuracy of the method were determined by performing spiked recovery tests. Appreciable recovery results were obtained for municipal wastewater and matrix matching was used to obtain close to 100% recovery for tap water.  相似文献   

20.
An efficient enantioselective method for the determination of mandipropamid in vegetables and fruits was presented by LC coupled with MS/MS. The mandipropamid residues in samples (potato, pepper, grape, and watermelon) were extracted with acetonitrile containing 1% acetic acid. An aliquot was cleaned up with primary and secondary amine and C18 sorbent. Complete enantioseparation of mandipropamid enantiomers in <4 min was obtained on a Lux Cellulose‐2 column at 25°C using methanol with 0.1% formic acid/0.1% aqueous formic acid solution (85:15, v/v) as mobile phase. Good linearity was obtained over the concentration range of 0.5–250 μg/L for each enantiomer in the standard solution and sample matrix calibration curves. Quantification was achieved using matrix‐matched standard calibration curves. The interday mean recoveries, intraday repeatability, and inter‐day reproducibility varied from 76.4 to 97.1%, 3.4 to 9.4%, and 3.5 to 11.4%, respectively. The limits of quantification for mandipropamid enantiomers in vegetables and fruits were both 1 μg/kg. Moreover, the absolute configuration of mandipropamid enantiomers was determined by the combination of experimental and predicted electronic circular dichroism spectra, and the first eluted enantiomer was confirmed as (R)‐mandipropamid on five chiral columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号