首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of amphiphilic triblock copolymers bearing a reactive alkoxysilane middle block as polymeric stabilizers is reported in this work. A series of poly(ethylene glycol) methyl ether methacrylate‐b‐(3‐trimethoxysilyl)propyl methacrylate‐b‐benzyl methacrylate (PEGMA‐b‐MPS‐b‐BzMA) triblock copolymers were prepared by RAFT solution polymerization and polymerization‐induced self‐assembly (PISA), respectively, where the various block lengths and overall composition were varied. The copolymers prepared by solution polymerization were employed as oil‐in‐water stabilizers where upon application of a catalyst, the 3‐(trimethoxysilyl)propyl methacrylate (MPS) block at the droplet interface was crosslinked to yield capsule‐like structures. The effectiveness of interfacial crosslinking was validated by dynamic light scattering and electron microscopy. In situ self‐assembly by the PISA method resulted in spherical nanoparticles of controllable size that were readily crosslinked by addition of base, with significant enhancement of colloidal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1897–1907  相似文献   

2.
The spontaneous hydrogel formation of a sort of biocompatible and biodegradable amphiphilic block copolymer in water was observed, and the underlying gelling mechanism was assumed. A series of ABA‐type triblock copolymers [poly(D,L ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(D,L ‐lactic acid‐co‐glycolic acid)] and different derivatives end‐capped by small alkyl groups were synthesized, and the aqueous phase behaviors of these samples were studied. The virgin triblock copolymers and most of the derivatives exhibited a temperature‐dependent reversible sol–gel transition in water. Both the poly(D,L ‐lactic acid‐co‐glycolic acid) length and end group were found to significantly tune the gel windows in the phase diagrams, but with different behaviors. The critical micelle concentrations were much lower than the associated critical gel concentrations, and an intact micellar structure remained after gelation. A combination of various measurement techniques confirmed that the sol–gel transition with an increase in the temperature was induced not simply via the self‐assembly of amphiphilic polymer chains but also via the further hydrophobic aggregation of micelles resulting in a micelle network due to a large‐scale self‐assembly. The coarsening of the micelle network was further suggested to account for the transition from a transparent gel to an opaque gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1122–1133, 2007  相似文献   

3.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

4.
ABA‐ and BAB‐type triblock copolymers possessing pendant, self‐assembling motifs in the A and B blocks were synthesized, with 2‐ureidopyrimidinone (UPy) and benzene‐1,3,5‐tricarboxamide (BTA) for the A and B block, respectively. They were investigated to assess if and how the polymer’s microstructure influences the self‐assembly behavior of the supramolecular motifs and, as a result, the single‐chain folding process. BAB‐type triblock copolymers were synthesized via atom transfer radical polymerization (ATRP) with molecular weights ranging from 30 to 120 kg mol?1; the BTA and UPy motifs were attached using a post‐functionalization approach. The ABA‐type triblock copolymers were available from previous work. In highly dilute solutions, both types of triblock copolymers fold into single‐chain polymeric nanoparticles (SCPNs) via thermally induced BTA self‐assembly and photo‐triggered UPy dimerization. Chain collapse induced by intramolecular UPy dimerization was evaluated using size‐exclusion chromatography (SEC). The BTA self‐assembly was monitored by circular dichroism (CD) spectroscopy. The microstructures of SCPNs were visualized by atomic force microscopy (AFM). SEC analysis indicated a more loose packing for the BAB‐type folded nanoparticles than for the ABA‐type ones, which implies that topological differences in the polymer architecture do affect the folding behavior, although only slightly. The facile synthetic protocol developed here provides topologically different triblock architectures and opens up the area for single‐chain folding technology that is applicable in artificial enzymatic systems with compartmentalized domains.  相似文献   

5.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

6.
Directing self‐assembly processes out‐of‐equilibrium to yield kinetically trapped materials with well‐defined dimensions remains a considerable challenge. Kinetically controlled assembly of self‐synthesizing peptide‐functionalized macrocycles through a nucleation–growth mechanism is reported. Spontaneous fiber formation in this system is effectively shut down as most of the material is diverted into metastable non‐assembling trimeric and tetrameric macrocycles. However, upon adding seeds to this mixture, well‐defined fibers with controllable lengths and narrow polydispersities are obtained. This seeded growth strategy also allows access to supramolecular triblock copolymers. The resulting noncovalent assemblies can be further stabilized through covalent capture. Taken together, these results show that self‐synthesizing materials, through their interplay between dynamic covalent bonds and noncovalent interactions, are uniquely suited for out‐of‐equilibrium self‐assembly.  相似文献   

7.
In this article, the synthesis and self‐assembly of a novel well‐defined biocompatible amphiphilic POEGMA‐PDMS‐POEGMA triblock copolymer were studied. The copolymer was synthesized by atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) using α,ω‐dibromo polydimethylsiloxane macroinitiator (Br‐PDMS‐Br). Br‐PDMS‐Br was synthesized through the esterification of α,ω‐hydroxypropyl polydimethylsiloxane and 2‐bromoisobutyryl bromide. The structures of the copolymers were confirmed by proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The copolymers showed reversible aggregation in response to temperature cycles with a lower critical solution temperature (LCST) between 61 and 66 °C, as determined by ultraviolet‐visible spectrophotometry and dynamic light scattering. The LCST values increased in proportion to the length of the hydrophilic block and were lower than that of the POEGMA homopolymer. The self‐assembly behavior of the copolymers in aqueous solution was investigated by fluorescence spectroscopy and transmission electron microscopy. The critical micelle concentration value (1.08–0.26 10?6 mol L?1) decreased as the length of the POEGMA chain increased. The POEGMA‐PDMS‐POEGMA copolymers can easily self‐assemble into spherical micelles in aqueous solution. Such biocompatible block copolymers may be attractive candidates as ‘‘smart'' thermo‐responsive drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2684‐2691  相似文献   

8.
The self‐assembly of ABC triblock copolymers in the microphase‐separated state is investigated using an isothermal‐isobaric molecular dynamics simulation. For the validation of our simulation scheme, ABA triblock copolymers are also simulated. We examine the effect of the composition (fB) of symmetric triblock copolymers on the morphology realized in these copolymers, keeping other parameters fixed. For ABA triblock copolymers, the transition from lamellar to cylindrical morphologies is observed with increasing the composition from fB = 0.5 to fB = 0.75, and such behavior is supported by calculation results of scattering patterns. These simulated results agree well with experimental and theoretical ones, validating our simulation method. More complex structures are predicted for ABC triblock copolymers. If midblock B is the minor component, its structures are changed from lamellar, cylindrical, to spherical morphology at the interface between A/C lamellae as fB decreases. For ABC triblock copolymers with the midblock B as the major component, the morphology of end blocks in the matrix composed of the midblock is changed from tricontinuous to spherical structures as fB increases.  相似文献   

9.
The first synthesis of asymmetric dendritic‐linear‐dendritic ABC block copolymers, that contain a linear B block and dissimilar A and C dendritic fragments is reported. Third generation poly(benzyl ether) monodendrons having benzyl alcohol moiety at their “focal” point were activated by quantitative titration with organometallic anions and the resulting alkoxides were used as initiators in the “living” ring‐opening polymerization of ethylene oxide. The reaction proceeded in controlled fashion at 40–50 °C affording linear‐dendritic AB block copolymers with predictable molecular weights (Mw = 6000–13,000) and narrow molecular weight distributions (Mw/Mn = 1.02–1.04). The propagation process was monitored by size‐exclusion chromatography with multiple detection. The resulting “living” copolymers were terminated by reaction either with HCl/tetrahydrofuran or with a reactive monodendron that differed from the initiating dendron not only in size, but also in chemical composition. The asymmetric triblock copolymers follow a peculiar structure‐induced self‐assembly pattern in block‐selective solvents as evidenced by size‐exclusion chromatography in combination with multi‐angle light scattering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5136–5148, 2007  相似文献   

10.
We report the synthesis, characterization, and solvent‐induced structure formation in thin films of an amphiphilic rod‐coil conjugated block copolymer, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide). The diblock copolymers were prepared by a facile click reaction and their characterizations as well as thermal, crystalline, optical properties, and self‐assembly behavior have been investigated in detail. A series of morphologies including two‐phase separated nanostructure, nanofibrils, and their mixed morphology could be obtained depending on the selectivity of solvents to different blocks. Structural analyses demonstrate there is a subtle balance between microphase separation of copolymer and the π‐π stacking of the conjugated P3HT and such balance can be controlled by changing the solvents of different selectivity in solution and the length of P3HT block. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

12.
Supramolecular self‐assembly of block copolymers in aqueous solution has received ever‐increasing interest over the past few decades due to diverse biological and technological applications in drug delivery, imaging, sensing and catalysis. In addition to relative block lengths, molecular weights and solution conditions, chain architectures of block copolymers can also dramatically affect their self‐assembling properties in selective solvents. This feature article mainly focuses on recent developments in the field of supramolecular self‐assembly of amphiphilic and double hydrophilic block copolymers (DHBCs) possessing nonlinear chain topologies, including miktoarm star polymers, dendritic–linear block copolymers, cyclic block copolymers and comb‐shaped copolymer brushes.

  相似文献   


13.
The synthesis and aqueous self‐assembly of a new class of amphiphilic aliphatic polyesters are presented. These AB block polyesters comprise polycaprolactone (hydrophobe) and an alternating polyester from succinic acid and an ether‐substituted epoxide (hydrophile). They self‐assemble into biodegradable polymersomes capable of entering cells. Their degradation products are bioactive, giving rise to differentiated cellular responses inducing stromal cell proliferation and macrophage apoptosis. Both effects emerge only when the copolymers enter cells as polymersomes and their magnitudes are size dependent.  相似文献   

14.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

15.
The polymerization of 4‐vinylpyridine was conducted in the presence of a cyclic trithiocarbonate (4,7‐diphenyl‐[1,3]dithiepane‐2‐thione) as a reversible addition–fragmentation transfer (RAFT) polymerization agent, and a multiblock polymer with narrow‐polydispersity blocks was prepared. Two kinds of multiblock copolymers of styrene and 4‐vinylpyridine, that is, (ABA)n multi‐triblock copolymers with polystyrene or poly(4‐vinylpyridine) as the outer blocks, were prepared with multiblock polystyrene or poly(4‐vinylpyridine) as a macro‐RAFT agent, respectively. GPC data for the original polymers and polymers cleaved by amine demonstrated the successful synthesis of amphiphilic multiblock copolymers of styrene and 4‐vinylpyridine via two‐step polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2617–2623, 2007  相似文献   

16.
Stimuli‐responsive ABC triblock copolymers with three segments with different phase‐separation temperatures were synthesized via sequential living cationic copolymerization. The triblock copolymers exhibited sensitive thermally induced physical gelation (open association) through the formation of micelles. For example, an aqueous solution of EOVE200b‐MOVE200b‐EOEOVE200 [where EOVE is 2‐ethoxyethyl vinyl ether, MOVE is 2‐methoxethyl vinyl ether and EOEOVE is 2‐(2‐ethoxy)ethoxyethyl vinyl ether; the order of the phase‐separation temperatures was poly(EOVE) (20 °C) < poly(EOEOVE) (41 °C) < poly(MOVE) (70 °C)] underwent multiple reversible transitions from sol (<20 °C) to micellization (20–41 °C) to physical gelation (physical crosslinking, 41–64 °C) and, finally, to precipitation (>64 °C). At 41–64 °C, the physical gel became stiffer than similar diblock or ABA triblock copolymers of the same molecular weight. Furthermore, the ABC triblock copolymers exhibited Weissenberg effects in semidilute aqueous solutions. In sharp contrast, another ABC triblock copolymer with a different arrangement, EOVE200b‐EOEOVE200b‐MOVE200, scarcely exhibited any increase in viscosity above 41 °C. The temperatures of micelle formation and physical gelation corresponded to the phase‐separation temperatures of the segment types in the ABC triblock copolymer. No second‐stage association was observed for AB and ABA block copolymers with the same thermosensitive segments found in their ABC counterparts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2601–2611, 2004  相似文献   

17.
We report a new design of photolabile acetal‐containing amphiphilic block copolymers. Acetals as protecting groups for carbonyls or diols can be hydrolyzed under acidic condition but very stable with respect to hydrolysis at pH > 7. When combining light‐capturing chromophores with acetals, the hydrolysis of acetals can be activated by light to design dual responsive acetal‐containing polymers. Using acetalization reaction of 2,3‐dihydroxypropyl methacrylate with benzaldehyde derivatives, two new acetal‐containing photolyzable monomers have been designed. Comparable to commonly used photolabile monomers containing nitrobenzyl esters, the two acetal‐containing monomers are easy to polymerize using atom transfer radical polymerization with excellent molecular weight and dispersity control. We studied the cleavage kinetics and mechanism of acetal groups in both monomers and polyethylene oxide (PEO)‐containing amphiphilic block copolymers using 1H NMR and UV–vis spectroscopy. o‐Nitrobenzaldehyde acetal showed a Norrish Type II rearrangement to form benzoic ester; while, 2,5‐dimethoxy benzaldehyde acetal was photolabile to completely release 2,3‐dihydroxypropyl methacrylate. The photocleavage of acetals is a zero‐order reaction in regardless of molecular states of acetals; while, the acid‐cleavage of acetals proves to be a first‐order kinetics and the cleavage becomes much slower for polymers. The self‐assembly of acetal‐containing amphiphilic block copolymers and the acid‐/light‐controlled dissociation of their vesicles have been investigated. We demonstrate that those acetal‐containing polymers are potentially useful as smart drug delivery systems where the release kinetics of payloads is tunable using light and pH as triggers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1815–1824  相似文献   

18.
Multisegmented poly(methacrylate)s were synthesized using one pot reversible addition fragmentation chain transfer polymerization. Initially, a series of triblock copolymers were synthesized with different ratios of trimethylsilyl methacrylate, di(ethylene oxide) methacrylate, and oligo(ethylene oxide) methacrylate, and different total polymer molecular weights. Additionally, a polymer containing seven distinct blocks of methacrylic monomers was synthesized in one pot. For the triblock copolymers, the trimethylsilyl group was subsequently hydrolyzed, and the self‐assembly of the triblock copolymer was studied in water, under different pH and thermal conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2548–2555  相似文献   

19.
In the effort towards making nanoscale objects and assemblies feasible for use as functional materials, it is imperative to obtain control over the fundamental architectures and essential to understand what experimental conditions cause the manifestation of specific morphologies. A number of factors are known to influence the shape during the self‐assembly of amphiphilic block copolymers in solution, including solvent composition, polymer length, hydrophobicity versus hydrophilicity, as well as the addition of additives that can interact with segments of the block copolymers. This research, focused on developing an understanding of the micellar architectures accessed by the amphiphilic triblock copolymer of acrylic acid, methyl acrylate, and styrene, PAA85b‐PMA40b‐PS35, as a function of the stirring rate, together with other factors, when undergoing coassembly with ethylenediamine or diethylenetriamine in water/tetrahydrofuran solutions. The work demonstrates that the rate at which the polymer solution was stirred impacts the shape of the solution‐state assemblies formed by the triblock copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
The synthesis of multi‐arm poly([R]‐3‐hydroxybutyrate) (PHB)‐based triblock copolymers (poly([R]‐3‐hydroxybutyrate)‐b‐poly(N‐isopropylacrylamide)‐b‐[[poly(methyl ether methacrylate)‐g‐poly(ethylene glycol)]‐co‐[poly(methacrylate)‐g‐poly(propylene glycol)]], PHB‐b‐PNIPAAM‐b‐(PPEGMEMA‐co‐PPPGMA), and their subsequent self‐assembly into thermo‐responsive hydrogels is described. Atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide (NIPAAM) followed by poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and poly(propylene glycol) methacrylate (PPGMA) was achieved from bromoesterified multi‐arm PHB macroinitiators. The composition of the resulting copolymers was investigated by 1H and 13C J‐MOD NMR spectroscopy as well as size‐exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The copolymers featuring different architectures and distinct hydrophilic/hydrophobic contents were found to self‐assemble into thermo‐responsive gels in aqueous solution. Rheological studies indicated that the linear one‐arm PHB‐based copolymer tend to form a micellar solution, whereas the two‐ and four‐arm PHB‐based copolymers afforded gels with enhanced mechanical properties and solid‐like behavior. These investigations are the first to correlate the gelation properties to the arm number of a PHB‐based copolymer. All copolymers revealed a double thermo‐responsive behavior due to the NIPAAM and PPGMA blocks, thus allowing first the copolymer self‐assembly at room temperature, and then the delivery of a drug at body temperature (37 °C). The non‐significant toxic response of the gels, as assessed by the cell viability of the CCD‐112CoN human fibroblast cell line with different concentrations of the triblock copolymers ranging from 0.03 to 1 mg mL?1, suggest that these PHB‐based thermo‐responsive gels are promising candidate biomaterials for drug‐delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号