首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polysaccharide‐based chiral stationary phases can be used for the enantioselective separation of a wide range of structurally different compounds. These phases are available with chiral selectors coated or immobilized on silica gel support. The means of attachment of the chiral selector to the carrier can influence the separation performance of these stationary phases. This paper deals with evaluation of differences in the separation abilities of coated Chiralpak AD‐RH versus immobilized Chiralpak IA amylose‐based stationary phases in the reversed–phase mode of high–performance liquid chromatography. A set of chiral analytes was separated under acidic and basic conditions. Differences were observed in the enantioseparation potential of the tested phases. The linear‐free energy relationship and additional evaluation of ionic interactions were used to ascertain whether the interactions that participate in retention and enantioseparation are affected by the means of preparation of these phases. All the interactions covered by the linear‐free energy relationship were significant for the studied phases and their absolute values were almost always higher for the coated phase. Ionic interactions were found to be more important on the immobilized stationary phase but did not contribute to any improvement in the enantioselective separation performance.  相似文献   

2.
《Electrophoresis》2018,39(16):2107-2116
Immobilized polysaccharide‐based columns showed excellent enantioselectivity in normal phase separation mode. In this work, enantioseparation abilities of four immobilized polysaccharide‐derived chiral stationary phases (Chiralpak IA, Chiralpak IB, Chiralpak IC, and Chiralpak ID) toward 15 azole compounds were evaluated. Separation was carried out using n‐hexane as mobile phase with ethanol, 1‐propanol, 1‐butanol, and 2‐propanol as modifiers. And twelve compounds have achieved baseline separation with the resolutions ranging between 2.05 and 21.73. The enantioseparation on the four polysaccharide‐based chiral columns using different alcohol modifiers was compared. In general, the best separation performance was identified as Chiralpak IC, which was able to resolve 11 compounds to baseline and two partially under the screening conditions. Separation on Chiralpak IB was not satisfactory, because only four compounds were baseline separated.  相似文献   

3.
本文运用涂敷型(Chiralpak AD-H)和键合型(Chiralpak IA)两种淀粉类手性固定相高效液相色谱法,进行了新型含苯并噻唑α-氨基膦酸酯类化合物的手性分离。从色谱分离的保留因子(k)、分离系数(α)和分离度(Rs)三个方面考察了两种类型色谱柱的分离性能,上述化合物在Chiralpak IA柱上能够得到较好的基线分离。同时,讨论了温度、流动相极性和目标分析物的结构等因素对Chiralpak IA柱分离性能的影响。由于键合型固定相较稳定的性能,使某些非常规的溶剂(如THF)成功地应用于手性α-氨基膦酸酯类化合物的分离。  相似文献   

4.
《Electrophoresis》2018,39(19):2398-2405
The enantioseparation of twelve pairs of structurally related 1‐aryl‐1‐indanone derivatives was studied in the normal‐phase mode using three different polysaccharide‐type chiral stationary phases, namely Chiralpak IB, Chiralpak IC, and Chiralpak ID. n‐Hexane/2‐propanol and n‐hexane/ethanol were employed as mobile phases. Among all the investigated chiral columns, Chiralpak IC exhibited the most universal and the best enantioseparation ability toward all the racemates, particularly with the mobile phase composed of n‐hexane/2‐propanol (90/10, v/v). Then the effects of column temperature on retention and enantioselectivity were examined in the range of 25–40°C. Satisfactory enantioseparation was obtained at ambient temperature. The natural logarithm of retention and separation factors (ln k and ln α) versus the reciprocal of absolute temperature (1/T) (Van't Hoff plots) were found to be linear for all racemates, indicating that the retention and separation mechanisms were independent of temperature in the range investigated. Then, the thermodynamic parameters (ΔΔH°, ΔΔS°, and ΔΔG°) were calculated from Van't Hoff plots. These values indicated that the solute transfer from the mobile to stationary phase was enthalpically favorable, and the process of enantioseparation was mainly enthalpy controlled. At last, the impact of small changes in molecular structures of the tested 1‐indanone derivatives on enantioseparation was also discussed.  相似文献   

5.
W. Lee 《Chromatographia》2000,53(3-4):156-158
Summary The liquid-chromatographic separation of the enantiomers of pyrethroic acids and their esters has been investigated on a polysaccharide-derived chiral stationary phase (CSP), Chiralpak AS. Good separation of the enantiomers of underivatized pyrethroic acids was achieved on the column, and the enantiomers of pyrethroic acid methyl and ethyl ester derivatives were also resolved.  相似文献   

6.
A simple and environmentally friendly reversed‐phase high‐performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose‐based Chiralpak IC‐3 chiral stationary phase using a green and low‐toxicity ethanol‐aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed‐mode hydrophilic interaction liquid chromatography and reversed‐phase retention mechanism operating on the IC‐3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water‐rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min.  相似文献   

7.
The liquid chromatographic enantiomer separation of N-fluorenylmethoxycarbonyl (FMOC) protected alpha-amino acids and their ethyl ester derivatives was performed on polysaccharide-derived chiral stationary phases, Chiralcel OD, Chiralpak AD, and Chiralpak AS. In general, Chiralcel OD and Chiralpak AD showed good performance for resolution of N-FMOC alpha-amino acids and their ethyl esters, respectively. All investigated N-FMOC alpha-amino acid enantiomers were baseline separated on Chiralcel OD or Chiralpak AD, whereas N-FMOC alpha-amino acid ethyl ester enantiomers were baseline resolved (alpha = 1.15-3.03) on Chiralpak AD, except for two analytes. The L-enantiomers of all examined FMOC alpha-amino acid ethyl ester derivatives are preferentially retained on Chiralpak AD, while the elution orders of the other enantiomer separations are not consistent.  相似文献   

8.
Enantiomeric separation of furanocoumarins and dihydroflavones compounds were systematically studied in the normal-phase mode using four different polysaccharide-type chiral stationary phases, namely, Chiralpak IA, Chiralpak IC, Chiralpak IG, and Chiralpak IK-3 by high-performance liquid chromatography. The effect of alcohol modifiers and alcohol content on enantiomeric separation was evaluated for the separation of furanocoumarins and dihydroflavones. All the eight compounds have achieved baseline separation with the resolutions ranging between 1.52 and 23.11. For a better insight into the enantiorecognition mechanisms, thermodynamic analysis was carried out. The mechanisms of chiral recognition have been discussed. Among four chiral columns, Chiralpak IG exhibited the most universal and the best enantioseparation ability toward furanocoumarins and dihydroflavones when used n-hexane-isopropanol and n-hexane-ethanol as mobile phase, respectively. The steric hindrance, hydrogen bonding, and π-π interaction played major roles in chiral recognition on Chiralpak IG. By comparing four chiral columns, this work systematically analyzed the separation methods of furanocoumarins and dihydroflavones for the first time and reported some active chiral ingredients of traditional Chinese medicine that have never been separated, which provided a further insight into the enantioseparation of furanocoumarins and dihydroflavones on chiral stationary phases.  相似文献   

9.
Thirteen pairs of enantiomers belonging to the same structural family (phenylthiohydantoin‐amino acids) were analyzed on two polysaccharide chiral stationary phases, namely, tris‐(3,5‐dimethylphenylcarbamate) of amylose (Chiralpak AD‐H) or cellulose (Chiralcel OD‐H) in supercritical fluid chromatography with a carbon dioxide/methanol mobile phase (90:10 v/v). Five different temperatures (5, 10, 20, 30, 40°C) were applied to evaluate the thermodynamic behavior of these enantioseparations. On the cellulose stationary phase, the retention, and separation trends were most similar among the set of probe analytes, suggesting that the chiral cavities in this stationary phase have little diversity, or that all analytes accessed the same cavities. Conversely, the retention and separation trends on the amylose phase were much more diverse, and could be related to structural differences among the set of probe analytes (carbon chain length in the amino acid residue, secondary amine in proline, existence of covalent rings, or formation of pseudo‐rings via intramolecular hydrogen bonds). The large variability of behaviors on the amylose phase suggests that the chiral‐binding sites in this chiral stationary phase have more variety than on the cellulose phase, and that the analytes did access different cavities.  相似文献   

10.
The LC enantiomeric separation of several dual PPARα/γ agonists on the commercially available Chiralcel OD and Chiralpak AD columns has been evaluated in normal phase mode using a mobile phase consisting in a mixture of n-hexane, 2-propanol and trifluoroacetic acid at constant volume ratio. Most compounds were separated as underivatized acids without requiring time consuming analysis. Some complementary selectivity was evidenced on the two investigated chiral stationary phases related to the different accessibility of the active sites of the helical cavities. Additional information on the chiral recognition mechanism were deduced from the chromatographic behaviour of some selected methyl esters.  相似文献   

11.
The HPLC enantioseparation of nine atropisomeric 3,3′,5,5′‐tetrasubstituted‐4,4′‐bipyridines was performed in normal and polar organic (PO) phase modes using two immobilized polysaccharide‐based chiral columns, namely, Chiralpak IA and Chiralpak IC. The separation of all racemic analytes, the effect of the chiral selector, and mobile phase (MP) composition on enantioseparation and the enantiomer elution order (EEO) were studied. The beneficial effect of nonstandard solvents, such as tetrahydrofuran (THF), dichloromethane (DCM), and methyl t‐butyl ether on enantioseparation was investigated. All selected 4,4′‐bipyridines were successfully enantioseparated on Chiralpak IA under normal or PO MPs with separation factors from 1.14 to 1.70 and resolutions from 1.3 to 6.5. Two bipyridines were enantioseparated at the multimilligram level on Chiralpak IA. Differently, Chiralpak IC was less versatile toward the considered class of compounds and only five bipyridines out of nine could be efficiently separated. In particular, on these columns, the ternary mixture n‐heptane/THF/DCM (90:5:5) as MP had a positive effect on enantioseparation. An interesting phenomenon of reversal of the EEO depending on the composition of the MP for the 3,3′‐dibromo‐5,5′‐bis‐(E)‐phenylethenyl‐4,4′‐bipyridine along with an exceptional enantioseparation for the 3,3′‐dibromo‐5,5′‐bis‐ferrocenylethynyl‐4,4′‐bipyridine (α = 8.33, Rs = 30.6) were observed on Chiralpak IC.  相似文献   

12.
RP high‐performance liquid chromatographic methods were developed for the enantioseparation of eleven unusual β2‐homoamino acids. The underivatized analytes were separated on a chiral stationary phase containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The effects of organic (alcoholic) and acidic modifiers, the mobile phase composition and temperature on the separation were investigated. The structures of the substituents in the α‐position of the analytes substantially influenced the retention and resolution. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

13.
Liquid chromatographic separation of stereoisomers of darunavir on Chiralpak AD‐H, a column containing the stationary phase coated with amylose tris(3,5‐dimethylphenylcarbamate) as a chiral selector, was studied under normal‐phase conditions at different temperatures between 20 and 50°C. The effect of quality and quantity of different polar organic modifiers viz: methanol, ethanol, 1‐propanol, and 2‐propanol in the mobile phase as well as column temperature on retention, separation, and resolution was investigated and optimized. The optimum separation was accomplished using a mobile phase composed of n‐hexane/ethanol/diethyl amine (80:20:0.1 v/v/v) at 40°C. Apparent thermodynamic parameters ΔH0 and ΔS* were derived from the Van't Hoff plots (lnk′ versus 1/T) and used to explain the strength of interactions between the stereoisomers and amylose tris(3,5‐dimethylphenylcarbamate) coated chiral stationary phase.  相似文献   

14.
Herein, the enantiomeric separation of simendan by high‐performance liquid chromatography with ultraviolet detection using polysaccharide‐based chiral stationary phases in polar organic mode is described. Three chiral columns (Chiralpak AD‐H, Chiralcel OD‐H, and Chiralpak AS) were screened using pure methanol and acetonitrile without additives under isocratic conditions. A reversed elution order was observed on the Chiralpak AD‐H column when the methanol content in the mobile phase (methanol–acetonitrile mixtures) was above 10%, whereby levosimendan eluted prior to dextrosimendan. Further, it was found that increasing temperature effectively improved the enantioresolution on the Chiralpak AD‐H column. Van't Hoff analysis was performed to evaluate the contribution of enthalpy and entropy to the chiral discrimination process. The best enantioseparation (α = 3.00, Rs = 12.85) was obtained on the Chiralpak AD‐H column with methanol as the mobile phase at 40°C. Thus, a quantitative method for the resolution of dextrosimendan was established and validated, which could be used as a reference for the determination of dextrosimendan in levosimendan products.  相似文献   

15.
Four polysaccharide-based chiral stationary phases have been used to separate the enantiomers of fourteen O,O-dialkyl-1-benzyloxycarbonyl-aminoarylmethyl phosphonates. These polysaccharide-based chiral stationary phases are Chiralpak AD, Chiralpak AS, Chiralcel OG and Chiralcel OJ. The data obtained indicate that the chiral separation ability for these organophosphonate compounds are in the order Chiralpak AD > Chiralcel OG > Chiralcel OJ > Chiralpak AS. With Chiralpak AD, all of the studied compounds could be easily baseline separated. Those two polysaccharides possess different chiral discrimination mechanism due to of the difference of the conformational structures of amylose and cellulose. The chiral discrimination of derivatized amylose chiral stationary phases were based on the stereogenic fit of the analytes in the helical structures of amylose and the transient diastereomeric complex formation between the analyte and the amylose CSP through π–π interaction H-bond interactions and induced dipole interactions exerted by the substituents on the analyte molecules. The chiral discrimination, in case of derivatized cellulose chiral stationary phase is based on the stereogenic fit of the analytes in the grooves of cellulose followed by interactions mentioned above between the analytes and the cellulose CSP.  相似文献   

16.
Two liquid chromatographic chiral stationary phases based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid were applied to the resolution of the amide derivatives of cyclic α‐amino acids including proline and pipecolic acid. Among the five amide derivatives of proline, aniline amide was resolved best on the first chiral stationary phase, which contains two N–H tethering amide groups, with the separation factor of 1.31 and the resolution of 2.60, and on the second chiral stationary phase, which contains two N–CH3 tethering amide groups, with the separation factor of 1.57 and the resolution of 5.50. Among the five amide derivatives of pipecolic acid, 2‐naphthyl amide was resolved best on the first chiral stationary phase with the separation factor of 1.30 and the resolution of 1.75, but 1‐naphthylmethyl amide was resolved best on the second chiral stationary phase with the separation factor of 1.30 and the resolution of 2.26. In general, the second chiral stationary phase was found to be better than the first chiral stationary phase in the resolution of the amide derivatives of cyclic α‐amino acids. In this study, the second chiral stationary phase was first demonstrated to be useful for the resolution of secondary amino compounds.  相似文献   

17.
Tert‐butylcarbamoyl‐quinine and ‐quinidine weak anion‐exchange chiral stationary phases (Chiralpak® QN‐AX and QD‐AX) have been applied for the separation of sodium β‐ketosulfonates, such as sodium chalconesulfonates and derivatives thereof. The influence of type and amount of co‐ and counterions on retention and enantioresolution was investigated using polar organic mobile phases. Both columns exhibited remarkable enantiodiscrimination properties for the investigated test solutes, in which the quinidine‐based column showed better enantioselectivity and slightly stronger retention for all analytes compared to the quinine‐derived chiral stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 mM NH3), 12 of 13 chiral sulfonates could be baseline separated within 8 min using the quinidine‐derivatized column. Furthermore, subcritical fluid chromatography (SubFC) mode with a CO2‐based mobile phase using a buffered methanolic modifier was compared to HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower elution power but also provided unique baseline resolution for one compound.  相似文献   

18.
A chiral liquid chromatographic method was developed and validated for the quantification of R‐enantiomer impurity (RE) in WCK 3023 (S‐enantiomer), a new drug substance. The separation was achieved on Chiralpak IA (amylose‐based immobilized chiral stationary phase), using a mobile phase consisting of n‐hexane–ethanol–trifluoroacetic acid (70:30:0.2, v/v/v) at a flow rate of 1.0 mL/min. The method was extensively validated for the quantification of RE in WCK 3023 and proved to be robust. For RE the detector response was linear over the concentration range of 0.11–5 μg/mL. The limit of quantitation and limit of detection for RE were 0.11 and 0.04 μg/mL respectively. Average recovery of the RE was in the range of 98.11–99.55%. The developed method was specific, sensitive, precise and accurate for quantitative determination of RE in WCK 3023. The impact of thermodynamic parameters on the chiral separation was evaluated. The method was employed for controlling the enantiomeric impurity in the lots of WCK 3023 used for pre‐clinical studies. The method was successfully applied to evaluate the possible conversion of WCK 3023 to RE in rat serum samples during pre‐clinical pharmacokinetic studies.  相似文献   

19.
An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(?)). The interaction and chiral recognition mechanisms were based on the synergistic double ion‐paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α‐amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion‐paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π–π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(?) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors.  相似文献   

20.
The direct HPLC enantioseparation of a novel series of chiral pyridazin-3(2H)-one derivatives with α-aminophosphonate moiety was performed on two immobilized polysaccharide chiral stationary phases (Chiralpak IA, Chiralpak IC) using n-hexane (n-Hex)/dichloromethane (DCM) mobile phase with 5% alcohol additive. Good baseline separation of the enantiomers was achieved using amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA) on analytical scale. The analytical method was further scaled up to semi-preparative loading to obtain small amounts of both the enantiomers of pyridazin-3(2H)-one derivative. The semi-preparative resolution of all compounds was successfully achieved with n-hexane/dichloromethane/ethanol (EtOH) as mobile phase using a semi-preparative Chiralpak IA column. The first fractions were isolated with purities of >99.9% (enantiomeric excess (e.e.), and the second fractions were obtained with purities of >98.2% (enantiomeric excess). The assignment of the absolute configuration was established for the F1 fraction of compound a-2 by single-crystal X-ray diffraction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号