首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method for the preparation of novel mixed‐mode reversed‐phase/strong cation exchange stationary phase for the separation of fixed‐dose combination drugs has been developed. An epoxysilane bonded silica prepared by vapor phase deposition was used as a starting material to produce diol, octadecyl, sulfonate, and mixed octadecyl/sulfonate groups bonded silica phases. The chemical structure and surface coverage of the functional groups on these synthesized phases were confirmed by fourier‐transform infrared and solid‐state 13C NMR spectroscopy and elemental analysis. Alkylbenzene homologs, basic drugs, nucleobases and alkylaniline homologs were used as probes to demonstrate the reversed‐phase, ion exchange, hydrophilic interaction and mixed‐mode retention behaviors of these stationary phases. The octadecyl/sulfonate bonded silica exhibits pronounced mixed‐mode retention behavior and superior retentivity and selectivity for alkylaniline homologs. The mixed‐mode retention is affected by either ionic or solvent strength in the mobile phase, permiting optimization of a separation by fine tuning these parameters. The mixed‐mode stationary phase was applied to separate two fixed‐dose combination drugs: compound reserpine tablets and compound methoxyphenamine capsules. The results show that simultaneous separation of multiple substances in the compound dosage can be achieved on the mixed‐mode phase, which makes multi‐cycles of analysis for multiple components obsolete.  相似文献   

2.
Anti‐MUC1 monoclonal antibodies (mAbs) are powerful tools that can be used to recognize cancer‐related MUC1 molecules, the O‐glycosylation status of which is believed to affect binding affinity. We demonstrate the feasibility of using a rapid screening methodology to elucidate those effects. The approach involves i) “one‐bead‐one‐compound”‐based preparation of bilayer resins carrying glycopeptides on the shell and mass‐tag tripeptides coding O‐glycan patterns in the core, ii) on‐resin screening with an anti‐MUC1 mAb, iii) separating positive resins by utilizing secondary antibody conjugation with magnetic beads, and (iv) decoding the mass‐tag that is detached from the positive resins pool by using mass spectrometric analysis. We tested a small library consisting of 27 MUC1 glycopeptides with different O‐glycosylations against anti‐MUC1 mAb clone VU‐3C6. Qualitative mass‐tag analysis showed that increasing the number of glycans leads to an increase in the binding affinity. Six glycopeptides selected from the library were validated by using a microarray‐based assay. Our screening provides valuable information on O‐glycosylations of epitopes leading to high affinity with mAb.  相似文献   

3.
A new water‐soluble tetra‐proline‐modified calix[4]arene‐bonded silica stationary phase was prepared straightforwardly by an indirect method and characterized by elemental analysis, energy dispersive Spectrometry, solid‐state 13C NMR spectroscopy, Fourier‐transform infrared spectroscopy, and thermogravimetric analysis. Due to the simultaneous introduction of polar tetra‐proline and nonpolar calix[4]arene, the developed column possessing a double retention mode of reverse‐phase liquid chromatography and hydrophilic interaction liquid chromatography. A series of hydrophobic and hydrophilic test samples, including nucleosides and nucleotides, amines, monosubstituted benzenes, chiral compounds, and phenols, were used to evaluate the developed stationary phase. A rapid separation capability, high separation efficiency, and selectivity were achieved based on the multiple interactions between solutes and tetra‐proline‐modified calix[4]arene‐bonded silica stationary phase. Moreover, the developed stationary phase was further used to detect and separate hexamethylenetetramine in rice flour. All the results indicated the potential merits of the developed stationary phase for simultaneous separation of complex hydrophobic and hydrophilic samples with high selectivity.  相似文献   

4.
A novel 3‐hydroxypropyl (propanol)‐bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)‐divinyltetramethyldisiloxane (Karstedt's catalyst). The regio‐selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C‐silylation predominated (~94%) over O‐silylation, and high surface coverages of propanol groups (5 ± 1 μmol/m2) were typically obtained in this work. The propanol‐bonded phase was characterized by spectroscopic (infrared (IR) and solid‐state NMR on silica microparticles), contact angle (on fused‐silica wafers) and CE (on fused‐silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, Tris(2,2′‐bipyridine)Ru(II) chloride and lysozyme on propanol‐modified capillaries were carried out. The adsorption properties of these select silanol‐sensitive solutes were compared to those on the unmodified and hydride‐modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion‐exchange‐based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol–probe interactions on the buffer‐exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube.  相似文献   

5.
A novel 1,3‐alternate 25,27‐bis‐[cyanopropyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene‐bonded silica gel stationary phase (CalixPrCN) was prepared and its structure was confirmed by ATR‐FTIR spectroscopy and elemental analysis. The CalixPrCN phase was characterized in terms of its surface coverage, hydrophobic selectivity, aromatic selectivity, shape selectivity, hydrogen bonding capacity, residue metal content, and silanol activity based on Tanaka, Lindner, and SMR 870 test protocols. The effect of the acetonitrile content on the retention and selectivity of the selected neutral, basic, and acidic solutes was studied. The neutral and acidic analytes exhibited classical RP behavior, in which retention time decreases with increasing acetonitrile content. In contrast, basic analytes showed an increase in retention at low and high percentages of acetonitrile, forming “U‐shaped” retention profiles. The new calixarene phase was compared with previously reported 1,3‐alternate 25,27‐bis‐[propyloxy]‐26,28‐bis‐[3‐propyloxy]‐calix[4]arene stationary phase and commercial cyanopropyl column. The results indicate that the CalixPrCN stationary phase behaves like RP packing; however, inclusion complex formation, dipole–dipole, and π–π interactions seem to be involved in the separation process. The selectivity of this phase was demonstrated in separation of polynuclear aromatic hydrocarbons, non‐steroidal anti‐inflammatory drugs, and sulfonamides as analytes.  相似文献   

6.
In the work, aminophenylboronic acid (APB)‐functionalized magnetic mesoporous silica, which holds the attractive features of high magnetic responsivity and large surface area, was developed to enrich glycopeptides. At first, magnetic mesoporous silica nanocomposites were prepared. And then, the nanocomposites were functioned with glycidoxypropyltrimethoxysilane (GLYMO) for boronic acid immobilization. Due to that the boronic acid group on the surface of magnetic mesoporous silica nanocomposites can form tight yet reversible covalent bond with glycopeptides containing cis‐1,2‐diols groups, the magnetic mesoporous silica nanocomposites were successfully applied to selective enrichment of glycopeptides. APB functionalized magnetic mesoporous silica was also demonstrated to have high selectivity for the glycopeptides in the presence of a 10‐fold excess bovine serum albumin (BSA) over horseradish peroxidase (HRP) in the tryptic digest. We also find that magnetic mesoporous silica has better sensitivity in HRP digest compared with that of commercial aminophenylboronic acid‐functionalized magnetic nanoparticles beads. The limit of detection for glycopeptides from glycoprotein HRP is about 0.01 ng/µL.  相似文献   

7.
《中国化学快报》2019,30(12):2181-2185
Investigations of glycosylated proteins or peptides and their related biological pathways provide new possibilities for illuminating the physiological and pathological mechanisms of glycosylation modification. However, open-ended and in-depth analysis of glycoproteomics is usually subjected to the low-abundance of glycopeptides, heterogeneous glycans, and a variety of interference molecules. In order to alleviate the influence of these obstacles, effective preconcentration of glycopeptides are indispensable. Here, we employed a hydrophilic interaction liquid chromatography (HILIC)-based method to universally capture glycopeptides. Glutathione modified magnetic nanoparticles (Fe3O4@Au-GSH) were synthesized through a simple process and exploited to enrich glycopeptides from complex samples. The prepared materials showed excellent ability to trap glycopeptides from standard glycoproteins digests, low detection limit (10 fmol/μL), and good selectivity (HRP:BSA = 1:100). These results indicated that glutathione-based magnetic nanoparticles synthesized in this work had great potential for glycopeptides enrichment.  相似文献   

8.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

9.
Bromoacetate‐substituted [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy]propylsilyl‐appended silica particles (BACD‐HPS), an important and useful synthetic intermediate for preparation of novel types of macrocycles‐capped β‐CD‐bonded silica particles including crown ether/cyclam/calix[4]arene‐capped β‐CD‐bonded silica particles, have been prepared and used as chiral stationary phase for HPLC. This synthetic stationary phase is characterized by means of elemental analysis. For the first time, the chromatographic behavior of BACD‐HPS was systematically evaluated with several disubstituted benzenes and some chiral drug compounds under both normal and RP conditions in HPLC. The results show that BACD‐HPS has excellent selectivity for the separation of aromatic positional isomers and chiral isomers of some drug compounds when used as stationary phase in HPLC.  相似文献   

10.
High‐mannose‐type glycans (HMTGs) decorating viral spike proteins are targets for virus neutralization. For carbohydrate‐binding proteins, multivalency is important for high avidity binding and potent inhibition. To define the chemical determinants controlling multivalent interactions we designed glycopeptide HMTG mimetics with systematically varied mannose valency and spacing. Using the potent antiviral lectin griffithsin (GRFT) as a model, we identified by NMR spectroscopy, SPR, analytical ultracentrifugation, and microcalorimetry glycopeptides that fully recapitulate the specificity and kinetics of binding to Man9GlcNAc2Asn and a synthetic nonamannoside. We find that mannose spacing and valency dictate whether glycopeptides engage GRFT in a face‐to‐face or an intermolecular binding mode. Surprisingly, although face‐to‐face interactions are of higher affinity, intermolecular interactions are longer lived. These findings yield key insights into mechanisms involved in glycan‐mediated viral inhibition.  相似文献   

11.
A large‐scale separation of paclitaxel from semi‐purified bark extract of Taxus yunnanesis was investigated. The chromatographic behavior of paclitaxel and two dose editing analogues, cephalomannine and 7‐epi‐10‐deacetyltaxol were systematically studied on a C18 bonded phase column with different mobile phase in reverse phase mode. According to the notably different selectivity of the methanol and acetonitrile with water in the mobile phase and the most important requirement of capacity in preparative chromatography, the optimum suitably mobile phase used in a large‐scale isolation of paclitaxel and 7‐epi‐10‐deacetyltaxol on a preparative C18 column was given. Cephalomannine was eliminated by ozonolysis and after then separated throughout a normal phase silica column. The whole large‐scale process for high purity paclitaxel from the bark extract of Taxus yunnanesis consisted of a preliminary purification with Biotage FLASH 150i system based on a prepacked normal phase silica cartridge followed by using a C18 Nova‐pak? column in Waters PrepLC? 4000 preparative HPLC system. The structure of 7‐epi‐10‐deacetyltaxol was elucidated by 2D NMR technologies of TOCSY, DQF‐COSY, HMQC and HMBC, etc.  相似文献   

12.
To enhance the catalytic activity in a selective one‐pot oxidation using in‐situ generated H2O2, a hydrophobically modified core–shell catalyst was synthesized by means of a simple silylation reaction using the fluorine‐containing silylation agent triethoxyfluorosilane (TEFS, SiF(OEt)3). The catalyst consisted of a Pd‐supported silica nanosphere and a mesoporous silica shell containing isolated TiIV and F ions bonded with silicon (Si?F bond). Structural analyses using XRD and N2 adsorption–desorption suggested that the mesoporous structure and large surface area of the mesoporous shells were retained even after the modification. During the one‐pot oxidation of sulfide, catalytic activity was enhanced significantly by increasing the amount of fluorine in the shell. A hydrophobic surface enhanced adsorption of the hydrophobic reactant into the mesopore, while the less hydrophobic oxygenated products efficiently diffused into the outside of the shell, which improved the catalytic activity and selectivity. In addition, the present methodology can be used to enhance the catalytic activity and selectivity in the one‐pot oxidation of cyclohexane by using an Fe‐based core–shell catalytic system.  相似文献   

13.
Efficient separation and enrichment of low‐abundance glycopeptides from complex biological samples is the key to the discovery of disease biomarkers. In this work, a new material was prepared by coating copper tetra(N‐carbonylacrylic) aminephthalocyanine and iminodiacetic acid onto poly(glycidyl methacrylate‐pentaerythritol triacrylate) monolith. The monolith was applied to polymer monolithic microextraction for specific capture of glycopeptides coupled with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The developed monolith exhibited satisfactory efficiency for glycopeptide enrichment with high selectivity and detection sensitivity. When the tryptic digest of immunoglobulin G was used as the sample, total 24 glycopeptides were identified and the detection limit was determined as 5 fmol. When the approach was applied to the analysis of glycopeptides in the mixture of bovine serum albumin and immunoglobulin G (100:1, m/m) digests, 16 glycopeptides could still be observed. Moreover, the monolith was successfully applied to the selective enrichment of glycopeptides from human serum digests, exhibiting great practicability in identifying low‐abundance glycopeptides in complex biological samples.  相似文献   

14.
Two new kinds of alanine‐substituted calix[4]arene stationary phases of 5,11,17,23‐p‐tert‐butyl‐25,27‐bis(l ‐alanine‐methylester‐N‐carbonyl‐methoxy)‐26,28‐dihyroxycalix[4]arene‐bonded silica gel stationary phase (BABS4) and 5, 11, 17, 23‐p‐tert‐butyl‐25,26,27,28‐tetra(l ‐alanine‐methylester‐N‐carbonyl‐methoxy)‐calix[4]arene‐bonded silica gel stationary phase (TABS4) were prepared and characterized in the present study. They were compared with each other and investigated in terms of their chromatographic performance by using polycyclic aromatic hydrocarbons, disubstituted benzene isomers, and mono‐substituted benzenes as solute probes. The results indicated that both BABS4 and TABS4 exhibited multiple interactions with analytes. In addition, the commonly used Tanaka characterization protocol for the evaluation of commercially available stationary phases was applied to evaluate the properties of these two new functionalized calixarene stationary phases. The Tanaka test results were compared with Zorbax Eclipse XDB C18 and Kromasil phenyl columns, respectively. BABS4 has stronger hydrogen‐bonding capacity and ion‐exchange capacity than TABS4, and features weaker hydrophobicity and hydrophobic selectivity. Both of them behave similarly in stereoselectivity. Both BABS4 and TABS4 are weaker than C18 and phenyl stationary phases in hydrophobicity and hydrophobic selectivity.  相似文献   

15.
Nitrogen collisional cross sections (CCSs) of hybrid and complex glycans released from the glycoproteins IgG, gp120 (from human immunodeficiency virus), ovalbumin, α1‐acid glycoprotein and thyroglobulin were measured with a travelling‐wave ion mobility mass spectrometer using dextran as the calibrant. The utility of this instrument for isomer separation was also investigated. Some isomers, such as Man3GlcNAc3 from chicken ovalbumin and Man3GlcNAc3Fuc1 from thyroglobulin could be partially resolved and identified by their negative ion fragmentation spectra obtained by collision‐induced decomposition (CID). Several other larger glycans, however, although existing as isomers, produced only asymmetric rather than separated arrival time distributions (ATDs). Nevertheless, in these cases, isomers could often be detected by plotting extracted fragment ATDs of diagnostic fragment ions from the negative ion CID spectra obtained in the transfer cell of the Waters Synapt mass spectrometer. Coincidence in the drift times of all fragment ions with an asymmetric ATD profile in this work, and in the related earlier paper on high‐mannose glycans, usually suggested that separations were because of conformers or anomers, whereas symmetrical ATDs of fragments showing differences in drift times indicated isomer separation. Although some significant differences in CCSs were found for the smaller isomeric glycans, the differences found for the larger compounds were usually too small to be analytically useful. Possible correlations between CCSs and structural types were also investigated, and it was found that complex glycans tended to have slightly smaller CCSs than high‐mannose glycans of comparable molecular weight. In addition, biantennary glycans containing a core fucose and/or a bisecting GlcNAc residue fell on different mobility‐m/z trend lines to those glycans not so substituted with both of these substituents contributing to larger CCSs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross‐linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two‐dimensional hydrophilic interaction liquid chromatography× reversed‐phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two‐dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents.  相似文献   

17.
A MS‐based methodology has been developed for analysis of core‐fucosylated versus antennary‐fucosylated glycosites in glycoproteins. This procedure is applied to the glycoprotein alpha‐1‐antitrypsin (A1AT), which contains both core‐ and antennary‐fucosylated glycosites. The workflow involves digestion of intact glycoproteins into glycopeptides, followed by double digestion with sialidase and galactosidase. The resulting glycopeptides with truncated glycans were separated using an off‐line HILIC (hydrophilic interaction liquid chromatography) separation where multiple fractions were collected at various time intervals. The glycopeptides in each fraction were treated with PNGase F and then divided into halves. One half of the sample was applied for peptide identification while the other half was processed for glycan analysis by derivatizing with a meladrazine reagent followed by MS analysis. This procedure provided site‐specific identification of glycosylation sites and the ability to distinguish core fucosylation and antennary fucosylation via a double digestion and a mass profile scan. Both core and antennary fucosylation are shown to be present on various glycosites in A1AT.  相似文献   

18.
The amphiphilic polymer‐grafted silica was newly prepared as a stationary phase in high‐performance liquid chromatography. Poly(4‐vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1‐bromooctadecane. The obtained poly(octadecylpyridinium)‐grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer–Emmett–Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)‐grafted silica as an amphiphilic polymer stationary phase in high‐performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl‐bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl‐bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation.  相似文献   

19.
Novel high‐capacity Ni2+ immobilized metal ion affinity chromatographic media were prepared through the dextran‐grafting process. Dextran was grafted to an allyl‐activated agarose‐based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran‐grafted agarose microspheres and partly dextran‐grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran‐grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran‐grafted microspheres, while just distributed around the outside of the partly dextran‐grafted ones. Flow hydrodynamic properties were improved greatly after the dextran‐grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran‐grafting process, and partly dextran‐grafted Ni2+ chelating medium had a maximum binding capacity for His‐tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high‐efficiency and large‐scale protein purification.  相似文献   

20.
The isomeric structure of high‐mannose N‐glycans can significantly impact biological recognition events. Here, the utility of travelling‐wave ion mobility mass spectrometry for isomer separation of high‐mannose N‐glycans is investigated. Negative ion fragmentation using collision‐induced dissociation gave more informative spectra than positive ion spectra with mass‐different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra, and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed, but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers or anomers were being separated. Collision cross sections of the isomers in positive and negative fragmentation mode were estimated from travelling‐wave ion mobility mass spectrometry data using dextran glycans as calibrant. More complete collision cross section data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N‐glycans released from the well‐characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross‐sectional data, details of the negative ion collision‐induced dissociation spectra of all resolved isomers are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号