首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The clique number of a digraph D is the size of the largest bidirectionally complete subdigraph of D. D is perfect if, for any induced subdigraph H of D, the dichromatic number defined by Neumann‐Lara (The dichromatic number of a digraph, J. Combin. Theory Ser. B 33 (1982), 265–270) equals the clique number . Using the Strong Perfect Graph Theorem (M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006), 51–229) we give a characterization of perfect digraphs by a set of forbidden induced subdigraphs. Modifying a recent proof of Bang‐Jensen et al. (Finding an induced subdivision of a digraph, Theoret. Comput. Sci. 443 (2012), 10–24) we show that the recognition of perfect digraphs is co‐‐complete. It turns out that perfect digraphs are exactly the complements of clique‐acyclic superorientations of perfect graphs. Thus, we obtain as a corollary that complements of perfect digraphs have a kernel, using a result of Boros and Gurvich (Perfect graphs are kernel solvable, Discrete Math. 159 (1996), 35–55). Finally, we prove that it is ‐complete to decide whether a perfect digraph has a kernel.  相似文献   

2.
The square G2 of a graph G is the graph defined on such that two vertices u and v are adjacent in G2 if the distance between u and v in G is at most 2. Let and be the chromatic number and the list chromatic number of a graph H, respectively. A graph H is called chromatic‐choosable if . It is an interesting problem to find graphs that are chromatic‐choosable. Kostochka and Woodall (Choosability conjectures and multicircuits, Discrete Math., 240 (2001), 123–143) conjectured that for every graph G, which is called List Square Coloring Conjecture. In this article, we give infinitely many counter examples to the conjecture. Moreover, we show that the value can be arbitrarily large.  相似文献   

3.
《Journal of Graph Theory》2018,88(4):592-605
Let k and ℓ be positive integers. A cycle with two blocks is a digraph obtained by an orientation of an undirected cycle, which consists of two internally (vertex) disjoint paths of lengths at least k and ℓ, respectively, from a vertex to another one. A problem of Addario‐Berry, Havet and Thomassé [J. Combin. Theory Ser. B 97 (2007), 620–626] asked if, given positive integers k and ℓ such that , any strongly connected digraph D containing no has chromatic number at most . In this article, we show that such digraph D has chromatic number at most , improving the previous upper bound of Cohen et al. [Subdivisions of oriented cycles in digraphs with large chromatic number, to appear]. We also show that if in addition D is Hamiltonian, then its underlying simple graph is ‐degenerate and thus the chromatic number of D is at most , which is tight.  相似文献   

4.
A digraph D is supereulerian if D has a spanning closed ditrail. Bang‐Jensen and Thomassé conjectured that if the arc‐strong connectivity of a digraph D is not less than the independence number , then D is supereulerian. A digraph is bipartite if its underlying graph is bipartite. Let be the size of a maximum matching of D. We prove that if D is a bipartite digraph satisfying , then D is supereulerian. Consequently, every bipartite digraph D satisfying is supereulerian. The bound of our main result is best possible.  相似文献   

5.
We prove that the list chromatic index of a graph of maximum degree Δ and treewidth is Δ; and that the total chromatic number of a graph of maximum degree Δ and treewidth is . This improves results by Meeks and Scott.  相似文献   

6.
For a graph G, let be the maximum number of vertices of G that can be colored whenever each vertex of G is given t permissible colors. Albertson, Grossman, and Haas conjectured that if G is s‐choosable and , then . In this article, we consider the online version of this conjecture. Let be the maximum number of vertices of G that can be colored online whenever each vertex of G is given t permissible colors online. An analog of the above conjecture is the following: if G is online s‐choosable and then . This article generalizes some results concerning partial list coloring to online partial list coloring. We prove that for any positive integers , . As a consequence, if s is a multiple of t, then . We also prove that if G is online s‐choosable and , then and for any , .  相似文献   

7.
We study a family of digraphs (directed graphs) that generalises the class of Cayley digraphs. For nonempty subsets of a group G, we define the two‐sided group digraph to have vertex set G, and an arc from x to y if and only if for some and . In common with Cayley graphs and digraphs, two‐sided group digraphs may be useful to model networks as the same routing and communication scheme can be implemented at each vertex. We determine necessary and sufficient conditions on L and R under which may be viewed as a simple graph of valency , and we call such graphs two‐sided group graphs. We also give sufficient conditions for two‐sided group digraphs to be connected, vertex‐transitive, or Cayley graphs. Several open problems are posed. Many examples are given, including one on 12 vertices with connected components of sizes 4 and 8.  相似文献   

8.
Let be a function on the vertex set of the graph . The graph G is f‐choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. The sum choice number, , is the minimum of , over all functions f such that G is f‐choosable. It is known (Alon, Surveys in Combinatorics, 1993 (Keele), London Mathematical Society Lecture Note Series, Vol. 187, Cambridge University Press, Cambridge, 1993, pp. 1–33, Random Struct Algor 16 (2000), 364–368) that if G has average degree d, then the usual choice number is at least , so they grow simultaneously. In this article, we show that can be bounded while the minimum degree . Our main tool is to give tight estimates for the sum choice number of the unbalanced complete bipartite graph .  相似文献   

9.
Given a digraph G, we propose a new method to find the recurrence equation for the number of vertices of the k‐iterated line digraph , for , where . We obtain this result by using the minimal polynomial of a quotient digraph of G.  相似文献   

10.
The k‐linkage problem is as follows: given a digraph and a collection of k terminal pairs such that all these vertices are distinct; decide whether D has a collection of vertex disjoint paths such that is from to for . A digraph is k‐linked if it has a k‐linkage for every choice of 2k distinct vertices and every choice of k pairs as above. The k‐linkage problem is NP‐complete already for [11] and there exists no function such that every ‐strong digraph has a k‐linkage for every choice of 2k distinct vertices of D [17]. Recently, Chudnovsky et al. [9] gave a polynomial algorithm for the k‐linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In this article, we use their result as well as the classical polynomial algorithm for the case of acyclic digraphs by Fortune et al. [11] to develop polynomial algorithms for the k‐linkage problem in locally semicomplete digraphs and several classes of decomposable digraphs, including quasi‐transitive digraphs and directed cographs. We also prove that the necessary condition of being ‐strong is also sufficient for round‐decomposable digraphs to be k‐linked, obtaining thus a best possible bound that improves a previous one of . Finally we settle a conjecture from [3] by proving that every 5‐strong locally semicomplete digraph is 2‐linked. This bound is also best possible (already for tournaments) [1].  相似文献   

11.
Král' and Sgall (J Graph Theory 49(3) (2005), 177–186) introduced a refinement of list coloring where every color list must be subset to one predetermined palette of colors. We call this ‐choosability when the palette is of size at most ? and the lists must be of size at least k . They showed that, for any integer , there is an integer , satisfying as , such that, if a graph is ‐choosable, then it is C‐choosable, and asked if C is required to be exponential in k . We demonstrate it must satisfy . For an integer , if is the least integer such that a graph is ‐choosable if it is ‐choosable, then we more generally supply a lower bound on , one that is super‐polynomial in k if , by relation to an extremal set theoretic property. By the use of containers, we also give upper bounds on that improve on earlier bounds if .  相似文献   

12.
《Journal of Graph Theory》2018,88(2):337-346
In this work, we present a generalization of Gale's lemma. Using this generalization, we introduce two sharp combinatorial lower bounds for and , the two classic topological lower bounds for the chromatic number of a graph G.  相似文献   

13.
A classical theorem of Brooks in graph coloring theory states that every connected graph G has its chromatic number less than or equal to its maximum degree , unless G is a complete graph or an odd cycle in which case is equal to . Brooks' theorem has been extended to list colorings by Erd?s, Rubin, and Taylor (and, independently, by Vizing) and to some of their variants such as list T‐colorings and pair‐list colorings. The bichromatic number is a relatively new parameter arisen in the study of extremal hereditary properties of graphs. This parameter simultaneously generalizes the chromatic number and the clique covering number of a graph. In this article, we prove a theorem, akin to that of Brooks, which states that every graph G has its bichromatic number less than or equal to its bidegree , unless G belongs to a set of specified graphs in which case is equal to .  相似文献   

14.
《Journal of Graph Theory》2018,87(2):135-148
Let ( be two positive integers. We generalize the well‐studied notions of ‐colorings and of the circular chromatic number to signed graphs. This implies a new notion of colorings of signed graphs, and the corresponding chromatic number χ. Some basic facts on circular colorings of signed graphs and on the circular chromatic number are proved, and differences to the results on unsigned graphs are analyzed. In particular, we show that the difference between the circular chromatic number and the chromatic number of a signed graph is at most 1. Indeed, there are signed graphs where the difference is 1. On the other hand, for a signed graph on n vertices, if the difference is smaller than 1, then there exists , such that the difference is at most . We also show that the notion of ‐colorings is equivalent to r‐colorings (see [12] (X. Zhu, Recent developments in circular coloring of graphs, in Topics in Discrete Mathematics Algorithms and Combinatorics Volume 26 , Springer Berlin Heidelberg, 2006, pp. 497–550)).  相似文献   

15.
This article intends to study some functors from the category of graphs to itself such that, for any graph G, the circular chromatic number of is determined by that of G. In this regard, we investigate some coloring properties of graph powers. We show that provided that . As a consequence, we show that if , then . In particular, and has no subgraph with circular chromatic number equal to . This provides a negative answer to a question asked in (X. Zhu, Discrete Math, 229(1–3) (2001), 371–410). Moreover, we investigate the nth multichromatic number of subdivision graphs. Also, we present an upper bound for the fractional chromatic number of subdivision graphs. Precisely, we show that .  相似文献   

16.
Let be a sequence of of nonnegative integers pairs. If a digraph D with satisfies and for each i with , then d is called a degree sequence of D. If D is a strict digraph, then d is called a strict digraphic sequence. Let be the collection of digraphs with degree sequence d . We characterize strict digraphic sequences d for which there exists a strict strong digraph .  相似文献   

17.
For a multigraph G, the integer round‐up of the fractional chromatic index provides a good general lower bound for the chromatic index . For an upper bound, Kahn 1996 showed that for any real there exists a positive integer N so that whenever . We show that for any multigraph G with order n and at least one edge, ). This gives the following natural generalization of Kahn's result: for any positive reals , there exists a positive integer N so that + c whenever . We also compare the upper bound found here to other leading upper bounds.  相似文献   

18.
A proper k‐coloring of a graph is a function such that , for every . The chromatic number is the minimum k such that there exists a proper k‐coloring of G. Given a spanning subgraph H of G, a q‐backbone k‐coloring of is a proper k‐coloring c of such that , for every edge . The q‐backbone chromatic number is the smallest k for which there exists a q‐backbone k‐coloring of . In this work, we show that every connected graph G has a spanning tree T such that , and that this value is the best possible. As a direct consequence, we get that every connected graph G has a spanning tree T for which , if , or , otherwise. Thus, by applying the Four Color Theorem, we have that every connected nonbipartite planar graph G has a spanning tree T such that . This settles a question by Wang, Bu, Montassier, and Raspaud (J Combin Optim 23(1) (2012), 79–93), and generalizes a number of previous partial results to their question.  相似文献   

19.
For a graph G and a tree‐decomposition of G, the chromatic number of is the maximum of , taken over all bags . The tree‐chromatic number of G is the minimum chromatic number of all tree‐decompositions of G. The path‐chromatic number of G is defined analogously. In this article, we introduce an operation that always increases the path‐chromatic number of a graph. As an easy corollary of our construction, we obtain an infinite family of graphs whose path‐chromatic number and tree‐chromatic number are different. This settles a question of Seymour (J Combin Theory Ser B 116 (2016), 229–237). Our results also imply that the path‐chromatic numbers of the Mycielski graphs are unbounded.  相似文献   

20.
《Journal of Graph Theory》2018,87(3):347-355
Ther‐dynamic choosability of a graph G, written , is the least k such that whenever each vertex is assigned a list of at least k colors a proper coloring can be chosen from the lists so that every vertex v has at least neighbors of distinct colors. Let ch(G) denote the choice number of G. In this article, we prove when is bounded. We also show that there exists a constant C such that the random graph with almost surely satisfies . Also if G is a triangle‐free regular graph, then we have .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号