首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
For decades the chemistry of polyhalides was dominated by polyiodides and more recently also by an increasing number of polybromides. However, apart from a few structures containing trichloride anions and a single report on an octachloride dianion, [Cl8]2?, polychlorine compounds such as polychloride anions are unknown. Herein, we report on the synthesis and investigation of large polychloride monoanions such as [Cl11]? found in [AsPh4][Cl11], [PPh4][Cl11], and [PNP][Cl11]?Cl2, and [Cl13]? obtained in [PNP][Cl13]. The polychloride dianion [Cl12]2? has been obtained in [NMe3Ph]2[Cl12]. The novel compounds have been thoroughly characterized by NMR spectroscopy, single‐crystal Raman spectroscopy, and single‐crystal X‐ray diffraction. The assignment of their spectra is supported by molecular and periodic solid‐state quantum‐chemical calculations.  相似文献   

2.
Polychloride monoanions stabilized by quaternary ammonium salts are investigated using Raman spectroscopy and state‐of‐the‐art quantum‐chemical calculations. A regular V‐shaped pentachloride is characterized for the [N(Me)4][Cl5] salt, whereas a hockey‐stick‐like structure is tentatively assigned for [N(Et)4][Cl2???Cl3?]. Increasing the size of the cation to the quaternary ammonium salts [NPr4]+ and [NBu4]+ leads to the formation of the [Cl3]? anion. The latter is found to be a pale yellow liquid at about 40 °C, whereas all the other compounds exist as powders. Further to these observations, the novel [Cl9]? anion is characterized by low‐temperature Raman spectroscopy in conjunction with quantum‐chemical calculations.  相似文献   

3.
Electronic Structure of Structural Open Derivatives of the [Mo6X14]2?-Cluster: [Mo5Cl13]2? and [Mo4I11]2? The electronic structure of structural open derivatives of the [Mo6X14]2?-cluster [Mo5Cl13]2? and [Mo4I11]2? has been studied by the EHMO method. In [Mo5Cl13]2? 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo4I11]2? the stronger covalent character of the Mo? I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo4 butterfly and the reason for decreasing the dihedral angle between the Mo3 planes in [Mo4I11]2? compared with the octahedral angle is apparently the stabilization of the whole system (Mo? Mo and Mo? I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo? Mo bonds) orbital.  相似文献   

4.
The Synthesis of the Dichloromethylene-halogenosulfenium Salts Cl2CSCl+ AsF6? and Cl2CSBr+ AsF6? The sulfenium salts Cl2CSCl+ AsF6? and Cl2CSBr+ AsF6? are synthesized by oxidative halogenation of thiophosgene, Cl2CS with X2/AsF5 (X = Cl, Br) at 195 K and are characterized by vibrational as well as NMR spectroscopy.  相似文献   

5.
6.
7.
8.
Reaction of CsF with ClF3 leads to Cs[Cl3F10]. It contains a molecular, propeller‐shaped [Cl3F10]? anion with a central μ3‐F atom and three T‐shaped ClF3 molecules coordinated to it. This anion represents the first example of a heteropolyhalide anion of higher ClF3 content than [ClF4]? and is the first Cl‐containing interhalogen species with a μ‐bridging F atom. The chemical bonds to the central μ3‐F atom are highly ionic and quite weak as the bond lengths within the coordinating XF3 units (X = Cl, and also calculated for Br, I) are almost unchanged in comparison to free XF3 molecules. Cs[Cl3F10] crystallizes in a very rarely observed A[5]B[5] structure type, where cations and anions are each pseudohexagonally close packed, and reside, each with coordination number five, in the trigonal bipyramidal voids of the other.  相似文献   

9.
Collision-induced dissociation of the ions [ArS]?, [ArSO]? and [ArSO2]? has uncovered a rich and varied ion chemistry. The major fragmentations of [ArS]? are complex and occur without prior ring hydrogen scrambling: for example, [C6H5S]?→[C2HS]? and [HS]?; [p-CD3C6H4S]?→[C6H4S]?˙, [CD3C4S]? and [C2HS]?. In contrast, all decompositions of [C6H5CH2S]? are preceded by specific benzylic and phenyl hydrogen interchange reactions. [ArSO2]? and [ArSO2]? ions undergo rearrangement, e.g. [C6H5SO]?→[C6H5O]? and [C6H5S]?; [C6H5SO2]?→[C6H5O] ?. The ion [C6H5CH2SO]? eliminates water, this decomposition is preceded by benzylic and phenyl hydrogen exchange.  相似文献   

10.
The oxonitridoaluminosilicate chloride Pr10[Si10?xAlxO9+xN17?x]Cl was obtained by the reaction of praseodymium metal, the respective chloride, AlN and Al(OH)3 with “Si(NH)2” in a radiofrequency furnace at temperatures around 1900 °C. The crystal structure was determined by single‐crystal X‐ray diffraction (Pbam, no. 55, Z = 2,a = 10.5973(8) Å, b = 11.1687(6) Å, c = 11.6179(7) Å, R1 = 0.0337). The sialon crystallizes isotypically to the oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl, which represent a new layered structure type. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/Noccupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The Si and Al atoms were refined equally distributed on their three crystallographic sites, due to their poor distinguishability by X‐ray analysis. The tetrahedra layers of the structure consist of condensed [(Si,Al)N2(O,N)2] and [(Si,Al)N3(O,N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compound was derived from electron probe micro analyses (EPMA).  相似文献   

11.
12.
13.
14.
15.
16.
Are the ‘Textbook Anions’ O2?, [CO3]2?, and [SO4]2? Fictitious? Experimental second electron affinities are still unknown for the title anions. It will be shown by means of quantum chemical ab initio calculations that these dianions are unstable with respect to spontaneous ionization. They all must be designated as non-existent.  相似文献   

17.
18.
The crystal structures of four substituted‐ammonium dichloride dodecachlorohexasilanes are presented. Each is crystallized with a different cation and one of the structures contains a benzene solvent molecule: bis(tetraethylammonium) dichloride dodecachlorohexasilane, 2C8H20N+·2Cl·Cl12Si6, (I), tetrabutylammonium tributylmethylammonium dichloride dodecachlorohexasilane, C16H36N+·C13H30N+·2Cl·Cl12Si6, (II), bis(tetrabutylammonium) dichloride dodecachlorohexasilane benzene disolvate, 2C16H36N+·2Cl·Cl12Si6·2C6H6, (III), and bis(benzyltriphenylphosphonium) dichloride dodecachlorohexasilane, 2C25H22P+·2Cl·Cl12Si6, (IV). In all four structures, the dodecachlorohexasilane ring is located on a crystallographic centre of inversion. The geometry of the dichloride dodecachlorohexasilanes in the different structures is almost the same, irrespective of the cocrystallized cation and solvent. However, the crystal structure of the parent dodecachlorohexasilane molecule shows that this molecule adopts a chair conformation. In (IV), the P atom and the benzyl group of the cation are disordered over two sites, with a site‐occupation factor of 0.560 (5) for the major‐occupied site.  相似文献   

19.
Endohedral clusters count as molecular models for intermetallic compounds—a class of compounds in which bonding principles are scarcely understood. Herein we report soluble cluster anions with the highest charges on a single cluster to date. The clusters reflect the close analogy between intermetalloid clusters and corresponding coordination polyhedra in intermetallic compounds. We now establish Raman spectroscopy as a reliable probe to assign for the first time the presence of discrete, endohedrally filled clusters in intermetallic phases. The ternary precursor alloys with nominal compositions “K5Co1.2Ge9” and “K4Ru3Sn7” exhibit characteristic bonding modes originating from metal atoms in the center of polyhedral clusters, thus revealing that filled clusters are present in these alloys. We report also on the structural characterization of [Co@Ge9]5? ( 1a ) and [Ru@Sn9]6? ( 2a ) obtained from solutions of the respective alloys.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号