首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Task‐specific ionic liquid‐based ultrasound‐assisted dispersive liquid–liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task‐specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT‐TL‐1, INCT‐MPH‐2) with the recovery values in the range of 90–104%.  相似文献   

2.
Abstract

Task-specific ionic liquids (TSILs) have received increased attention over the past few years as it is possible to form any specific ionic liquid (IL) composition depending upon user's need of the desired physical, chemical, and biological properties. These fascinating materials have shown promising results in various areas such as organic synthesis, catalysis, and specially recent emerging trend of use as functionalized ILs for chiral and nanoparticle synthesis. Present review gives an update of recent developments in the field of TSILs with emphasis on their applications in organic synthesis.  相似文献   

3.
We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R ,2S ,5R )‐(–)‐menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β‐d ‐glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as “structural task‐specific ionic liquids” responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors.  相似文献   

4.
First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task‐specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho‐positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0–24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination.  相似文献   

5.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

6.
Mandelic acid and its derivatives are important medical intermediates in the pharmaceutical industry. Different stereoisomers exhibited distinct biological properties to human bodies. Given that, enantioselective recognition and separation of mandelic acid are of great importance. In this study, four novel different types of chiral ionic liquids bearing designed functional groups were synthesized and successful enantioselective precipitation with mandelic acid and its derivatives. That is, (R, R)‐chiral ionic liquid 1 can coprecipitated with S‐mandelic acid and its derivatives was observed. In addition, good correlation coefficient is achieved by using electrospray mass spectrum at negative ion pattern for quick analysis of the enantioselective precipitation, which could be served as a method of enantioselective recognition. The possible intermolecular interactions are established after systematical studies by NMR spectroscopy and DFT calculations.  相似文献   

7.
Ionic liquids and derivatives—mainly polymeric ionic liquids and magnetic ionic liquids—have been extensively used in microscale extraction over the past few years. Current trends in analytical sample preparation gear toward linking microextraction approaches with high‐throughput sample processing to comply with green analytical chemistry requirements. A variety of high sample throughput strategies that are coupled to both ionic‐liquid‐based solid‐phase microextraction and ionic liquid‐based liquid‐phase microextraction are herein reported. The review is focused on microscale extraction methods that use (i) custom‐made and dedicated extraction devices, (ii) parallel extraction, (iii) magnetic‐based separation, and (iv) miniaturized systems employing semi‐automatic or fully automatic flow injection methods, related micro/millifluidic devices, and robotic equipment.  相似文献   

8.
Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1‐butyl‐3‐vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as‐obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e.g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e.g., diphenylamine, metronidazole, 2,4‐dichlorophenol, and m‐dihydroxybenzene) was quite low. 1H NMR spectroscopy indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π‐π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high‐performance liquid chromatography analysis, a valid molecularly imprinted polymer‐solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93–107%, and a relative standard deviation of lower than 9.7%.  相似文献   

9.
The morphology and ionic conductivity of poly(1‐n‐alkyl‐3‐vinylimidazolium)‐based homopolymers polymerized from ionic liquids were investigated as a function of the alkyl chain length and counterion type. In general, X‐ray scattering showed three features: (i) backbone‐to‐backbone, (ii) anion‐to‐anion, and (iii) pendant‐to‐pendant characteristic distances. As the alkyl chain length increases, the backbone‐to‐backbone separation increases. As the size of counterion increases, the anion‐to‐anion scattering peak becomes apparent and its correlation length increases. The X‐ray scattering features shift to lower angles as the temperature increases due to thermal expansion. The ionic conductivity results show that the glass transition temperature (Tg) is a dominant, but not exclusive, parameter in determining ion transport. The Tg‐independent ionic conductivity decreases as the backbone‐to‐backbone spacing increases. Further interpretation of the ionic conductivity using the Vogel–Fulcher–Tammann equation enabled the correlation between polymer morphology and ionic conductivity, which highlights the importance of anion hoping between adjacent polymer backbones. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

11.
The predominant mode of strontium ion transfer from aqueous nitrate media into a series of 1-fluoroalkyl-3-methylimidazolium bis[(trifluoromethylsulfonyl)]imides containing dicyclohexano-18-crown-6 (DCH18C6) is shown to shift from cation exchange to strontium nitrato-crown ether complex partitioning as the length of the fluoroalkyl substituent is increased. Fluoroalkyl substituents are shown to be only slightly more effective than their non-fluorous analogs at inducing this shift. At the same time, the fluorinated ionic liquids (ILs) yield strontium distribution ratios as much as an order of magnitude lower than the corresponding 1-alkyl-3-methylimidazolium (Cnmim+) salts. Fluorous ILs thus appear to offer no compelling advantages over Cnmim+ ionic liquids as extraction solvents.  相似文献   

12.
Tang F  Zhang Q  Ren D  Nie Z  Liu Q  Yao S 《Journal of chromatography. A》2010,1217(28):4669-4674
Amino acid ionic liquids (AAILs) have received great attention due to their potentials in catalysis and separations. In this work, functional AAILs were used as solvent and selector in chiral liquid–liquid extraction for the first time. The AAILs have shown distinct enantioselectivity in amino acid extraction. Using these functional AAILs as acceptor phase and ethylacetate as donor phase, more L-enantiomer of amino acid was extracted into the ionic liquid phase than that of D-enantiomer. The influencing factors, including AAILs structure, copper ion concentration, organic phase and amino acid concentration, were investigated. We found that the enantioselective enrichment of racemic amino acids was achieved through a chiral ligand-exchange mechanism. The enantioselectivity of single-step extraction was up to enantiomeric excess value of 50.6%. Moreover, the functional AAILs were found to be efficient extraction solvents for amino acids. The logarithm of distribution coefficient for L-Phe was in the range of 3.4–3.6 in the ionic liquid–ethylacetate two-phase system. This liquid–liquid extraction approach may extend the application of ionic liquids in chiral separations.  相似文献   

13.
A method of reversed‐phase ion‐pair solid‐phase extraction combined with ion chromatography for determination of pyrrolidinium ionic liquid cations (N‐methyl‐N‐ethyl pyrrolidinium, N‐methyl‐N‐propyl pyrrolidinium, and N‐methyl‐N‐butyl pyrrolidinium) in water samples was developed in this study. First, ion‐pair reagent sodium heptanesulfonate was added to the water samples after static, centrifugation and filteration. Then, pyrrolidinium cations in the samples were enriched and purified by a reversed‐phase solid‐phase extraction column, and eluted from the column with methanol aqueous solution as eluent. Finally, the eluate collected was analyzed by ion chromatography. The separation and direct conductivity detection of these pyrrolidinium cations by ion‐exchange column using 1.0 mM methanesulfonic acid (in water)/acetonitrile (97:3, v:v) as mobile phase was achieved within 10 min. By using this method, pyrrolidinium cations in Songhua River and Hulan River were successfully extracted with the recoveries ranging from 74.2 to 97.1% and the enrichment factor assessed as 60. Pyrrolidinium cations with the concentration of 0.001?0.03 mg/L can be enriched and detected in the water samples. The developed method for the determination of pyrrolidinium ionic liquid cations in water samples is simple and reliable, which provides a reference for the study of the potential impact of ionic liquids on the environment.  相似文献   

14.
15.
Magnetic graphene oxide was modified by four imidazole‐based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid‐phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single‐factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid–liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid‐modified magnetic graphene oxide materials, and amount of 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic‐liquid‐modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties.  相似文献   

16.
The fabrication of novel poly(ionic liquids)‐modified polystyrene (PSt) magnetic nanospheres (PILs‐PMNPs) by a one‐pot miniemulsion copolymerization reaction was achieved through an efficient microwave‐assisted synthesis method. The morphology, structure, and magnetic behavior of the as‐prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high‐performance ultrafast liquid chromatography analysis. Significant extraction parameters that could affect the extraction efficiencies were investigated particularly. Under optimum conditions, good linearity was obtained in the concentration range of 0.5–50 (dimethyl phthalate), 0.3–50 (diethyl phthalate), 0.2–50 (butyl benzyl phthalate), and 0.4–50 μg/L (di‐n‐butyl phthalate), with correlation coefficients R 2 > 0.9989. Limits of detection were in the range 125–350 pg. The proposed method was successfully applied to determine PAEs from beverage samples with satisfactory recovery ranging from 77.8 to 102.1% and relative standard deviations ranging from 3.7 to 8.4%. Comparisons of extraction efficiency with PSt‐modified MNPs as sorbents were performed. The results demonstrated that PILs‐PMNPs possessed an excellent adsorption capability toward the trace PAE analytes.  相似文献   

17.
We have synthesized nanoparticles of hexagonal CdS in the diameter range 3-13 nm by the reaction of cadmium acetate dihydrate with thioacetamide in imidazolium [BMIM]-based ionic liquids. We have obtained three different particle sizes of CdS by changing the anion of the ionic liquid. Addition of trioctylphosphine oxide (TOPO) to the reaction mixture causes greater monodispersity as well as smaller particle size, while addition of ethylenediamine produces nanorods of 7 nm average diameter. Hexagonal ZnS and cubic PbS nanoparticles with average diameters of 3 and 10 nm, respectively, have been prepared by the reaction of the metal acetates with thioacetamide in [BMIM][BF4]. Hexagonal CdSe nanoparticles with an average diameter 12 nm were obtained by the reaction of cadmium acetate dihydrate with dimethylselenourea in [BMIM][BF4]. In this case also we observe the same effect of the addition of TOPO as in the case of CdS. Addition of ethylenediamine to the reaction mixture gives rise to nanorods. ZnSe nanowires with a cubic structures, possible diameters in the range 70-100 nm by the reaction of zinc acetate dihydrate with dimethylselenourea in [BMIM][MeSO4]. The nanostructures obtained are single crystalline in all the cases. Most of the nanostructures show characteristic UV/Vis absorption and photoluminescence emission spectra. The thermodynamically most stable structures are generally produced in the synthesis carried out in ionic liquids.  相似文献   

18.
A novel microextraction method, termed microwave‐assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high‐performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1‐hexyl‐3‐methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1‐butyl‐3‐methylimidazolium tetrafluoroborate. In addition, an ion‐pairing agent (NH4PF6) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00–250.00 μg/L, with the correlation coefficients of 0.9982–0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7–105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples.  相似文献   

19.
Chiral ligand‐exchange chromatography is one of the elective strategies for the direct enantioresolution of small chelating compounds: amino acids, diamines, amino alcohols, diols, small peptides, etc. Unlike other methods, the interaction between chiral selector and analyte enantiomers is mediated by a cation, thus producing diastereomeric ternary complexes. Two main approaches are conventionally applied in chiral ligand‐exchange chromatography. The first relies upon chiral stationary phases where the chiral selector is either covalently immobilized or physically adsorbed onto suitable packing materials (coated phases). In the second approach, chiral molecules are added to the eluent, thus generating chiral eluent systems. Among the advantages of chiral ligand‐exchange chromatography, the generation of UV/vis‐active metal complexes, and the use of commercially available or easy‐to‐synthesize chiral selectors, in combination to rather inexpensive achiral columns for coated phases and chiral eluents, are noteworthy. Besides amino acids and amino alcohols, other species have proven suitable for chiral ligand‐exchange chromatography applications. Recently, the use of either chiral ionic liquids or micellar liquid chromatography systems as well as the successful off‐column formation of diastereomeric complexes have expanded the selectivity profiles and application fields. All of these issues are touched in the review, shedding light to the contributions appeared in the last decade.  相似文献   

20.
A novel mixed hemimicelles and magnetic dispersive solid‐phase extraction method based on long‐chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe3O4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02–10 ng/mL) and good linearity were attained (0.9997–0.9999). The intraday and interday RSDs were 2.1–8.3%. Limits of detection were 0.004–0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号