首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
null   总被引:28,自引:0,他引:28  
本文对近10年来出现的新型离子液体进行了分类综述,并对其发展前景提出了一些见解.  相似文献   

2.
The selective extraction of metals from aqueous mixtures has generally relied on the use of selective ionophores. We present an alternative strategy that exploits a recently developed approach to extraction into an ionic liquid phase, and show that a high degree of control over selectivity can be obtained by tuning the relative concentrations of extraction agents. A thermodynamic model for the approach is presented, and an experimental separation of strontium and potassium ions is performed. It is shown that tuning the concentrations of the species involved can shift the ratio of potassium to strontium in the ionic liquid phase from 4:1 to 3:4. This extraction is performed under mild conditions with relatively common reagents. The result is a proof‐of‐concept for a novel separations scheme that could have great importance in a wide range of technological applications.  相似文献   

3.
功能化离子液体的制备及其在合成中的应用   总被引:2,自引:1,他引:2  
功能化离子液体;手性离子液体;酸性离子液体  相似文献   

4.
Abstract

Task‐specific ionic liquids possessing two Brönsted acid sites with –COOH, HSO? 4, or H2PO? 4 groups have been designed, synthesized, and characterized. Under mild conditions and without any additional organic solvent, the esterification of isopropanol by chloroacetic acid could be carried out in these new task‐specific ionic liquids. In comparison with most of acidic ionic liquids in current use, these ionic liquids are halogen free and more environmentally benign as media and catalysts.  相似文献   

5.
功能性离子液体在金属萃取分离中的研究进展   总被引:1,自引:0,他引:1  
近年来,离子液体在金属萃取领域的研究受到广泛关注,主要集中在两个方面,一是疏水性离子液体作为“绿色”溶剂用于金属离子萃取;二是带有官能团的功能性离子液体作为萃取剂用于金属离子萃取,其中,后者是目前研究的热点。 本文主要对近年来功能性离子液体萃取分离放射性金属、重金属和稀土金属等研究进行综述,并对其未来发展进行了展望。  相似文献   

6.
Abstract

Task-specific ionic liquids (TSILs) have received increased attention over the past few years as it is possible to form any specific ionic liquid (IL) composition depending upon user's need of the desired physical, chemical, and biological properties. These fascinating materials have shown promising results in various areas such as organic synthesis, catalysis, and specially recent emerging trend of use as functionalized ILs for chiral and nanoparticle synthesis. Present review gives an update of recent developments in the field of TSILs with emphasis on their applications in organic synthesis.  相似文献   

7.
    
Chiral ligand‐exchange chromatography is one of the elective strategies for the direct enantioresolution of small chelating compounds: amino acids, diamines, amino alcohols, diols, small peptides, etc. Unlike other methods, the interaction between chiral selector and analyte enantiomers is mediated by a cation, thus producing diastereomeric ternary complexes. Two main approaches are conventionally applied in chiral ligand‐exchange chromatography. The first relies upon chiral stationary phases where the chiral selector is either covalently immobilized or physically adsorbed onto suitable packing materials (coated phases). In the second approach, chiral molecules are added to the eluent, thus generating chiral eluent systems. Among the advantages of chiral ligand‐exchange chromatography, the generation of UV/vis‐active metal complexes, and the use of commercially available or easy‐to‐synthesize chiral selectors, in combination to rather inexpensive achiral columns for coated phases and chiral eluents, are noteworthy. Besides amino acids and amino alcohols, other species have proven suitable for chiral ligand‐exchange chromatography applications. Recently, the use of either chiral ionic liquids or micellar liquid chromatography systems as well as the successful off‐column formation of diastereomeric complexes have expanded the selectivity profiles and application fields. All of these issues are touched in the review, shedding light to the contributions appeared in the last decade.  相似文献   

8.
    
Chiral ionic liquids (CILs), or ionic liquids (ILs) with chiral additives, are very attractive chiral media for enantioselective electroanalysis, on account of their high chiral structural order at the electrochemical interphase. A family of molecular salts with CIL properties is now introduced, based on the chiral steroid building block of deoxycholic acid implemented either in the anion or cation. Testing them as chiral additives in a commercial achiral IL, they enable voltammetric discrimination of the enantiomers of a model chiral probe on disposable screen-printed electrodes in terms of peak potential differences, which is the most desirable transduction mode of the enantiorecognition event. The probe enantiomer sequence is the same for all selectors, consistent with their sharing the same chiral building block configuration. This proof-of-concept widens the application fields of bile acid derivatives as chiral selectors, while also enriching the still very few CIL families so far explored for applications in chiral electroanalysis.  相似文献   

9.
    
The simultaneous removal of organic, inorganic, and microbial contaminants from water by one material offers significant advantages when fast, facile, and robust water purification is required. Herein, we present a supported ionic liquid phase (SILP) composite where each component targets a specific type of water contaminant: a polyoxometalate‐ionic liquid (POM‐IL) is immobilized on porous silica, giving the heterogeneous SILP. The water‐insoluble POM‐IL is composed of antimicrobial alkylammonium cations and lacunary polyoxometalate anions with heavy‐metal binding sites. The lipophilicity of the POM‐IL enables adsorption of organic contaminants. The silica support can bind radionuclides. Using the POM‐SILP in filtration columns enables one‐step multi‐contaminant water purification. The results show how multi‐functional POM‐SILPs can be designed for advanced purification applications.  相似文献   

10.
An ionic liquid/aqueous two-phase system based on the hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and K(2)HPO(4) has been employed for direct extraction of proteins from human body fluids for the first time. Proteins present at low levels were quantitatively extracted into the BmimCl-rich upper phase with a distribution ratio of about 10 between the upper and lower phase and an enrichment factor of 5. Addition of an appropriate amount of K(2)HPO(4) to the separated upper phase results in a further phase separation, giving rise to an improved enrichment factor of 20. FTIR and UV spectroscopy demonstrated that no chemical (bonding) interactions between the ionic liquid and the protein functional groups were identifiable, while no alterations of the natural properties of the proteins were observed. The partitioning of proteins in the two-phase system was assumed to have been facilitated by the electrostatic potential difference between the coexisting phases, as well as by salting out effects. The system could be applied successfully for the quantification of proteins in human urine after on-line phase separation in a flow system. The use of an ionic liquid, as a green solvent, offers clear advantages over traditional liquid-liquid extractions, in which the use of toxic organic solvents is unavoidable.  相似文献   

11.
12.
For the first time, the study of a three-step extraction system of water/ionic liquid/supercritical CO2 has been performed. Extraction of trivalent lanthanum and europium from an aqueous nitric acid solution to a supercritical CO2 phase via an imidazolium-based ionic liquid phase is demonstrated, and extraction efficiencies higher than 87 % were achieved. The quantitative extraction is obtained by using different fluorinated beta-diketones with and without the addition of tri(n-butyl)phosphate. The complexation phenomenon occurring in the room-temperature ionic-liquid (RTIL) phase was evidenced by using luminescence spectroscopy.  相似文献   

13.
    
A set of new tunable aryl alkyl ionic liquids (TAAILs) based on the 1-aryl-3-alkyl imidazolium motif has been synthesized, in which the following variables were systematically changed: alkyl chain length, aryl substitution (group and position), and counter ion. TAAILs with dicyanamide (DCA) and bis(trifluoromethylsulfonyl)imide (N(SO2CF3)2, NTf2) anions showed remarkable differences of their physical properties: NTf2 ionic liquids were found to have high decomposition temperatures and viscosities well below those of the DCA TAAILs. In contrast, the dicyanamide anion increased the electrochemical stability leading to TAAILs with an extremely wide electrochemical window of up to 7.17 V. Additionally, both classes of TAAILs extract transition metals from aqueous solutions: TAAILs with the DCA anion extract both platinum and copper while TAAILs with the NTf2 anion are selective towards platinum. This demonstrates that minor changes of the molecular structure lead to TAAILs with drastically changed physicochemical properties.  相似文献   

14.
以咪唑类离子液体1-癸基-3-甲基咪唑三氟磺酰亚胺盐[C10mim][NTf2]为萃取剂,研究了其对铈(Ⅳ)的萃取行为,分别考察了萃取时间、料液浓度、硝酸浓度、离子液体咪唑环上烷基链长、无机盐浓度和温度对萃取过程的影响。 热力学计算表明,萃取过程是自发的放热过程。 推测可能的萃取机理是阴离子交换机理。 对萃取液进行了反萃考察,在硫酸浓度为1.0 mol/L时,反萃率为85.1%。  相似文献   

15.
    
The extraction of metals from waste printed circuit boards (WPCBs) with ionic liquids (ILs), Deep Eutectic Solvents (DESs) and organophosphorous-based acid (Cyanex 272) has been presented. The study was undertaken to assess the effectiveness of the application of the new leaching liquids, and the new method of extraction of metals from the leachate and the solid phase with or without the leaching process. Solvent extraction from the liquid leachate phase has been studied in detail with popular ILs, such as tetraoctylphosphonium bromide, {[P8,8,8,8][Br] and tributyltetradecylphosphonium chloride, [P4,4,4,14][Cl] using Aqueous Biphasic Systems (ABS) method. Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, [P6,6,6,14][Cyanex272], ([P6,6,6,14][BTMPP]), trihexyltetradecylphosphonium thiocyanate, [P6,6,6,14][SCN], methyltrioctylammonium chloride (Aliquat 336), as well as bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) were also used in the extraction of metals from the leachate. Two DESs (1) {choline chloride + lactic acid, 1:2} and (2) {choline chloride + malonic acid, 1:1} were used in the extraction of metals from the solid phase. The extraction behavior of metals with DESs was compared with that performed with three new bi-functional ILs: didecyldimethylammonium salicylate, [N10,10,1,1][Sal], didecyldimethylammonium bis(2-ethylhexyl) phosphate, [N10,10,1,1][D2EHPA], and didecyldimethylammonium bis(2,4,4-trimethylpentyl) phosphinate, [N10,10,1,1][Cyanex272]. The [P6,6,6,14][Cyanex272]/toluene and (Cyanex 272 + diethyl phosphite ester) mixtures exhibited a high extraction efficiency of about 50–90% for different metal ions from the leachate. High extraction efficiency of about 90–100 wt% with the ABS method using the mixture {[P8,8,8,8][Br], or [P4,4,4,14][Cl] + NaCl + H2O2 + post-leaching liquid phase} was obtained. The DES 2 revealed the efficiency of copper extraction, ECu = 15.8 wt% and silver, EAg = 20.1 wt% at pH = 5 from the solid phase after the thermal pre-treatment and acid leaching. The solid phase extraction efficiency after thermal pre-treatment only was (ECu = 9.6 wt% and EAg = 14.2 wt%). The use of new bi-functional ILs did not improve the efficiency of the extraction of metal ions from the solid phase. Process factors such as solvent concentration, extraction additives, stripping and leaching methods, temperature, pH and liquid/solid as well as organic/water ratios were under control. For all the systems, the selectivity and distribution ratios were described. The proposed extraction processes can represent alternative paths in new technologies for recovering metals from electronic secondary waste.  相似文献   

16.
    
Mandelic acid and its derivatives are important medical intermediates in the pharmaceutical industry. Different stereoisomers exhibited distinct biological properties to human bodies. Given that, enantioselective recognition and separation of mandelic acid are of great importance. In this study, four novel different types of chiral ionic liquids bearing designed functional groups were synthesized and successful enantioselective precipitation with mandelic acid and its derivatives. That is, (R, R)‐chiral ionic liquid 1 can coprecipitated with S‐mandelic acid and its derivatives was observed. In addition, good correlation coefficient is achieved by using electrospray mass spectrum at negative ion pattern for quick analysis of the enantioselective precipitation, which could be served as a method of enantioselective recognition. The possible intermolecular interactions are established after systematical studies by NMR spectroscopy and DFT calculations.  相似文献   

17.
    
Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1‐butyl‐3‐vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as‐obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e.g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e.g., diphenylamine, metronidazole, 2,4‐dichlorophenol, and m‐dihydroxybenzene) was quite low. 1H NMR spectroscopy indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π‐π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high‐performance liquid chromatography analysis, a valid molecularly imprinted polymer‐solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93–107%, and a relative standard deviation of lower than 9.7%.  相似文献   

18.
19.
We present new results on the liquid–liquid extraction of uranium (VI) from a nitric acid aqueous phase into a tri‐n‐butyl phosphate/1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (TBP/[C4mim][Tf2N]) phase. The individual solubilities of the ionic‐liquid ions in the upper part of the biphasic system are measured over the whole acidic range and as a function of the TBP concentration. New insights into the extraction mechanism are obtained through the in situ characterization of the extracted uranyl complexes by coupling UV/Vis and extended X‐ray absorption fine structure (EXAFS) spectroscopy. We propose a chemical model to explain uranium (VI) extraction that describes the data through a fit of the uranyl distribution ratio DU. In this model, at low acid concentrations uranium (VI) is extracted as the cationic complex [UO2(TBP)2]2+, by an exchange with one proton and one C4mim+. At high acid concentrations, the extraction proceeds through a cationic exchange between [UO2(NO3)(HNO3)(TBP)2]+ and one C4mim+. As a consequence of this mechanism, the variation of DU as a function of TBP concentration depends on the C4mim+ concentration in the aqueous phase. This explains why noninteger values are often derived by analysis of DU versus [TBP] plots to determine the number of TBP molecules involved in the extraction of uranyl in an ionic‐liquid phase.  相似文献   

20.
    
We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R ,2S ,5R )‐(–)‐menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β‐d ‐glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as “structural task‐specific ionic liquids” responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号