首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds.  相似文献   

2.
Postcolumn derivatization for liquid chromatography/mass spectrometry (LC/MS) analysis was characterized for detection of some compounds related to chemical-weapons (CW) agents using an Atmospheric Pressure Chemical Ionization (APCI) source. The derivatizing reagents were added directly to the LC eluent flow, and the derivatization reactions occurred in the APCI source under typical operating conditions. The compound S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid was methylated using the derivatizing reagent trimethylphenyl ammonium hydroxide (TMPAH). Methylphosphonic acid was doubly derivatized to form dimethyl methylphosphonate, although the signal for the derivatization product was very sensitive to the amount of TMPAH. Arsenic compounds related to the CW agent lewisite, including chlorovinyl arsonous acid and arsenic (III) oxide, were derivatized using 2-mercaptopyridine. The thiol group reacted readily with the arsenic (III) center and provided a significant improvement in sensitivity relative to the underivatized signal using APCI or electrospray ionization. Triethanolamine and ethyl diethanolamine were derivatized with benzoyl chloride, a commonly used LC derivatizing reagent for alcohols, to modify their mass spectra. Postcolumn derivatization using an APCI source gives an alternative for detecting some difficult-to-ionize compounds. It has the limitations that sensitivity was not always improved even though the major mass spectral peaks can be shifted; it is necessary to carefully select the reagent; and some reagents introduced strong interference peaks at specific masses in the spectrum and may suppress the ionization of some derivatized analyte ions. The reagent also produced contamination in the source, which had to be cleaned daily.  相似文献   

3.
The applicability of 3‐pyridyl isothiocyanate, p‐(dimethylamino)phenyl isothiocyanate and m‐nitrophenyl isothiocyanate as the derivatization reagents for amines in high‐performance liquid chromatography/electrospray ionization–tandem mass spectrometry (LC/ESI‐MS/MS) was examined. The generated derivatives of amines with these reagents were favorably separated on the reversed‐phase column and detected by ESI‐MS/MS. The C–N bond of the generated thiourea structure was efficiently cleaved by collision‐induced dissociation and gave the single and intense product ion. Among the three reagents, 3‐pyridyl isothiocyanate was the most suitable as the derivatization reagent with regard to the reactivity to amines and the detection sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Benzofurazan derivatization reagents, 4‐[2‐(N,N‐dimethylamino)ethylaminosulfonyl]‐7‐(2‐aminopentylamino)‐2,1,3‐benzoxadiazole (DAABD‐AP) and 4‐[2‐(N,N‐dimethylamino) ethylaminosulfonyl]‐7‐(2‐aminobutylamino)‐2,1,3‐benzoxadiazole (DAABD‐AB), for short‐chain carboxylic acids in liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) were synthesized. These reagents reacted with short chain carboxylic acids in the presence of the condensation reagents at 60°C for 60 min. The generated derivatives were separated on the reversed‐phase column and detected by ESI‐MS/MS with the detection limits of 0.1–0.12 pmol on column. Upon collision‐induced dissociation, a single and intense product ion at m/z 151 was observed. These results indicated that DAABD‐AP and DAABD‐AB are suitable as the derivatization reagents in LC/ESI‐MS/MS analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Effect of Mobile Phase on Electrospray Ionization Efficiency   总被引:1,自引:0,他引:1  
Electrospray (ESI) ionization efficiencies (IE) of a set of 10 compounds differing by chemical nature, extent of ionization in solution (basicity), and by hydrophobicity (tetrapropylammonium and tetraethylammonium ion, triethylamine, 1-naphthylamine, N,N-dimethylaniline, diphenylphthalate, dimethylphtahalate, piperidine, pyrrolidine, pyridine) have been measured in seven mobile phases (three acetonitrile percentages 20%, 50%, and 80%, and three different pH-adjusting additives, 0.1% formic acid, 1 mM ammonia, pH 5.0 buffer combination) using the relative measurement method. MS parameters were optimized separately for each ion. The resulting relative IE data were converted into comparable logIE values by anchoring them to the logIE of tetrapropylammonium ion taking into account the differences of ionization in different solvents and thereby making the logIE values of the compounds comparable across solvents. The following conclusions were made from analysis of the data. The compounds with pK a values in the range of the solution pH values displayed higher IE at lower pH. The sensitivity of IE towards pH depends on hydrophobicity being very strong with pyridine, weaker with N,N-dimethylaniline, and weakest with 1-naphthylamine. IEs of tetraalkylammonium ions and triethylamine were expectedly insensitive towards solution pH. Surprisingly high IEs of phthalate esters were observed. The differences in solutions with different acetonitrile content and similar pH were smaller compared with the pH effects. These results highlight the importance of hydrophobicity in electrospray and demonstrate that high hydrophobicity can sometimes successfully compensate for low basicity. Graphical Abstract
?  相似文献   

6.
Steroid sex hormones and related synthetic compounds have been shown to provoke alarming estrogenic effects in aquatic organisms, such as feminization, at very low concentrations (ng/L or pg/L). In this work, different chromatographic techniques, namely, gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), are discussed for the analysis of estrogens, both free and conjugated, and progestogens, and the sensitivities achieved with the various techniques are inter-compared. GC/MS analyses are usually carried out after derivatization of the analytes with bis(trimethylsilyl)trifluoroacetamide (BSTFA). For LC/MS and LC/MS/MS analyses, different instruments, ionization techniques (electrospray (ESI) and atmospheric pressure chemical ionization (APCI)), ionization modes (negative ion (NI) and positive ion (PI)) and monitoring modes (selected ion monitoring (SIM) and selected reaction monitoring (SRM)) are generally employed. Based on sensitivity and selectivity, LC/ESI-MS/MS is generally the method of choice for determination of estrogens in the NI mode and of progestogens in the PI mode (instrumental detection limits (IDLs) 0.1-10 ng/mL). IDLs achieved by LC/ESI-MS in the SIM mode and by LC/ESI-MS/MS in the SRM mode were, in general, comparable, although the selectivity of the latter is significantly higher and essential to avoid false positive determinations in the analysis of real samples. Conclusions and future perspectives are outlined.  相似文献   

7.
1 Introduction Gaschromatography/massspectrometry (GC/MS)andliquidchromatography/massspectrometry (LC/MS) ,representativesofthehyphenatedtechniques ,aresomeofthemostreliableanalyticalmethods ,whicharethesynergisticcombinationoftwopowerfulanalyticaltechniques;…  相似文献   

8.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

9.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

10.
We have developed a highly sensitive and positively charged precolumn derivatization reagent, (5‐N‐succinimidoxy‐5‐oxopentyl)triphenylphosphonium bromide (SPTPP), for amines and amino acids in liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS). The handling of the derivatization reaction is quite simple and the reagent reacts with the analytes rapidly and with high efficiency. The derivatized analytes were observed to form regular and intense product ions upon MS/MS analysis; thus, highly sensitive and selective detection was possible in the selected reaction monitoring (SRM) mode. The limits of detection of the SPTPP‐derivatized analytes were less than sub‐femtomole levels. The sensitivities of the derivatized analytes increased about 500‐fold compared to those of underivatized analytes. Since the hydrophobicities of the samples increased after their derivatization, the resolution of the analytes improved dramatically when a reversed‐phase system was used. The relative standard deviations of intra‐day and inter‐day variations were below 10.6% and 13.3%, respectively. The accuracy ranged between 86.6–113% and 83.4–113%, respectively. Furthermore, the developed reagent was used for the analysis of the neurotransmitter 4‐aminobutanoic acid (GABA) and oxidative stress markers such as oxidized, nitrated, and halogenated tyrosines in rat serum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

12.
 Liquid chromatography/mass spectrometry (LC/MS) is now considered to be the most promising analytical method for the determination of biological substances, especially nonvolatile or highly polar substances However, some compounds do not show enough sensitivity in LC/MS and soft ionization methods commonly used in LC/MS, such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), sometimes do not give satisfactory structural information This report presents an overview  相似文献   

13.
Liquid chromatography (LC)/electro-chemistry/mass spectrometry (MS) with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) has been used for the determination of several alcohols and alkylphenols in gasoline and diesel fuels. After rapid sample preparation and a derivatization step with ferrocenecarboxylic acid chloride, the LC separation resulted in complex chromatograms. Selected mass traces helped to identify several groups of alcohols and phenols. Only a sum parameter could be obtained for alcohols and phenols of the same molecular mass because of the large number of structural isomers that were not chromatographically resolved in the mass traces. The results for qualitative screening of seven gasoline and four diesel fuel samples are presented. Apart from alcohols and phenols, several other compounds were also found in the samples. Many of these unknown compounds could be arranged in four series of homologues with a mass difference of 14 mass units. The potential of the method to analyze alcohol and phenol patterns without chromatographic separation was studied using both nanospray and electrospray ion sources in combination with tandem-MS.  相似文献   

14.
Gas chromatography/mass spectrometry (GC/MS) is applied to the analysis of volatile and thermally stable compounds, while liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI‐MS) and liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS) are preferred for the analysis of compounds with solution acid‐base chemistry. Because organic explosives are compounds with low polarity and some of them are thermally labile, they have not been very well analyzed by GC/MS, LC/APCI‐MS and LC/ESI‐MS. Herein, we demonstrate liquid chromatography/negative ion atmospheric pressure photoionization mass spectrometry (LC/NI‐APPI‐MS) as a novel and highly sensitive method for their analysis. Using LC/NI‐APPI‐MS, limits of quantification (LOQs) of nitroaromatics and nitramines down to the middle pg range have been achieved in full MS scan mode, which are approximately one order to two orders magnitude lower than those previously reported using GC/MS or LC/APCI‐MS. The calibration dynamic ranges achieved by LC/NI‐APPI‐MS are also wider than those using GC/MS and LC/APCI‐MS. The reproducibility of LC/NI‐APPI‐MS is also very reliable, with the intraday and interday variabilities by coefficient of variation (CV) of 0.2–3.4% and 0.6–1.9% for 2,4,6‐trinitrotoluene (2,4,6‐TNT). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Five well‐known active naphtodianthrone constituents of Hypericum perforatum (St John's Wort) extracts have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICRMS) and ESI‐FTICRMSn. The studied compounds were hypericin, pseudohypericin, protohypericin, protopseudohypericin (biosynthetic precursors of the two former compounds, respectively) and isopseudohypericin (alkaline degradation product of pseudohypericin). Dissociation mass spectrometry measurements performed on the [M–H]? ion presented a variable efficiency as a function of the used activation mode. Sustained off‐resonance irradiation collision‐induced dissociation (SORI–CID) only led to a restricted number of fragment ions. In contrast, IRMPD ensured the detection of numerous product ions. Ions detected in ESI‐FTICRMS and ESI‐FTICRMSn experiments were measured with a very high mass accuracy (typically mass error is lower than 0.5 mDa at m/z close to 500) that allowed unambiguous formulae to be assigned to each signal observed in a mass spectrum. In spite of similar structures, specific fragmentation patterns were observed for the different compounds investigated. This study may be useful in the future to characterize in natural extracts these compounds (or derivatives of these compounds) by liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments by considering the MS/MS transitions highlighted in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Derivatization with 1,2‐dimethylimidazole‐4‐sulfonyl chloride (DMISC) has been successfully used as a tool to differentiate between aromatic and aliphatic O‐glucuronides of hydroxypropranolol. The analyses were performed with liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS) with both a triple quadrupole and an ion trap instrument. Hydroxylated forms of propranolol can be glucuronidated in aliphatic as well as aromatic positions. These isoforms are not distinguishable by tandem MS alone, as they both initially lose 176 Da, i.e. monodehydrated glucuronic acid, giving back the aglycone. Two in vitro systems were set up for the production of propranolol metabolites. The obtained isomers of 4′‐hydroxypropranolol glucuronide were determined to correspond to one aliphatic and one aromatic form, using chemical derivatization with DMISC and LC‐MSn. DMISC was shown to react with the secondary amine in the case where the naphtol was occupied by the glucuronyl moiety, resulting in a different fragmentation pattern compared with that of the aliphatic glucuronide, where the naphtol group was accessible to derivatization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Tomato (Lycopersicon esculentum Mill.) is the second most important fruit crop worldwide. Tomatoes are a key component in the Mediterranean diet, which is strongly associated with a reduced risk of chronic degenerative diseases. In this work, we use a combination of mass spectrometry (MS) techniques with negative ion detection, liquid chromatography/electrospray ionization linear ion trap quadrupole‐Orbitrap‐mass spectrometry (LC/ESI‐LTQ‐Orbitrap‐MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) on a triple quadrupole, for the identification of the constituents of tomato samples. First, we tested for the presence of polyphenolic compounds through generic MS/MS experiments such as neutral loss and precursor ion scans on the triple quadrupole system. Confirmation of the compounds previously identified was accomplished by injection into the high‐resolution system (LTQ‐Orbitrap) using accurate mass measurements in MS, MS2 and MS3 modes. In this way, 38 compounds were identified in tomato samples with very good mass accuracy (<2 mDa), three of them, as far as we know, not previously reported in tomato samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1‐azabicyclo[2.2.2]octane (ABCO) or 1,4‐diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI‐MS) and longer retention times on the reverse‐phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision‐induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a‐ and b‐type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision‐induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI‐MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes a novel method for the sensitive and selective determination of fudosteine in human plasma. The method involves a derivatization step with 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer and detection based on high-performance liquid chromatography-electrospray ionization mass spectrometry (LC/ESI/MS). After acetonitrile-induced protein precipitation of plasma samples, fudosteine was derivatized with FMOC-Cl, then extracted by ethyl acetate, evaporated, reconstituted and injected using an LC/ESI/MS instrument. Separation was achieved using an ODS column and isocratic elution. Excellent linearity was obtained for the entire calibration range from 0.05 to 20 microg/ml. Validation assays of the lower limit of quantification (LLOQ) as well as for the intra- and inter-batch precision and accuracy met the international acceptance criteria for bioanalytical method validation. Using the developed analytical method, fudosteine could be detected for the first time in human plasma with a low limit of detection (LLOD) of 0.03 microg/ml. The proposed method has been successfully applied to study the pharmacokinetics of fudosteine in healthy Chinese volunteers after single and multiple oral administration.  相似文献   

20.
Liquid chromatography electrospray ionization mass spectrometry (LC/ESI/MS) has been widely used for various analyses. However, it is difficult to use LC/ESI/MS for the analysis of low polar compounds, such as polycyclic aromatic hydrocarbons. It is well known that AuCl4? ion decomposes to AuCl3 by heating, and AuCl3 is a strong π‐electrophilic Lewis acid. Low polar compounds (pyrene, benzo[a]pyrene, perylene, benzo[ghi]perylene, dibenzothiophene and p‐dimethoxybenzene) were detected by ESI/MS in the positive ion mode by adding NaAuCl4. The low polar compound interacts with AuCl3 formed at the ESI interface, and undergoes electron transfer to AuCl3. The radical cation of the low polar compound was then detected by MS. In addition, the LC/ESI/MS determination of polycyclic aromatic hydrocarbons by the post‐column addition of NaAuCl4 was studied. © 2016 The Authors Journal of Mass Spectrometry Published by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号