首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this study, a sandwich‐type electrochemical enzyme‐based LNA‐modified DNA biosensor was developed to detect relative gene in chronic Myelogenous Leukemia first. This biosensor is based on a ‘sandwich’ detection strategy, which involves a pair of probes (a capture probe immobilized at the electrode surface and a reporter probe labeled biotin as an affinity tag for avidin‐HRP) modified LNA. Since biotin can be connected with avidin‐HRP, this biosensor offers an enzymatically amplified electrochemical current signal for the detection of target DNA. This new pattern exhibits high sensitivity and selectivity, and this biosensor has been used for an assay of PCR real sample with satisfactory result.  相似文献   

2.
In this work, a novel sandwich‐type electrochemical immunosensor with electroactive nickel hexacyanoferrate nanoparticles (NiHCFNPs) as matrix was constructed for α‐fetoprotein (AFP) detection in a signal‐off manner by using FeS2?AuNPs nanocomposite catalyzed insoluble precipitation to significantly inhibit the electrochemical signal. Initially, the NiHCFNPs with excellent electrochemical property was modified on the electrodeposited nano‐Au electrode to obtain a strong initial electrochemical signal. Subsequently, another nano‐Au layer was formed for immobilization of capture antibody (Ab1). In the presence of target AFP, the prepared FeS2?AuNPs‐Ab2 bioconjugate could be specifically recognized and immobilized on electrode through the sandwich‐type immunoreaction. The FeS2 with large specific surface areas were used as scaffolds to load abundant mimicking enzyme AuNPs. With the help of hydrogen peroxide (H2O2), FeS2?AuNPs with peroxidase‐like activity accelerated the 4‐chloro‐1‐naphthol (4‐CN) oxidation with generation of insoluble precipitation on electrode, which would greatly hinder the electron transfer and thus caused the decrease of electrochemical signal for quantitative determination of AFP. This approach achieved a wide dynamic linear range from 0.0001 to 100 ng mL?1 with an ultralow limit detection of 0.028 pg mL?1. Especially, the proposed AFP immunosensor can be applied to detect human serum samples with satisfactory results, indicating a potential application in clinical monitoring of tumor biomarkers.  相似文献   

3.
Facile electrical communication between redox-active labeling molecules and electrode is essential in the electrochemical detection of bio-affinity reactions. In this report, nanometer-sized indium tin oxide (ITO) particles were employed in the fabrication of porous thick film electrodes to enhance the otherwise impeded electrochemical activity of redox labels in multi-layered protein films, and to enable quantitative detection of avidin/biotin binding interaction. To carry out the affinity reaction, avidin immobilized on an ITO electrode was reacted with mouse IgG labeled with both biotin and ruthenium Tris-(2,2′-bipyridine) (Ru-bipy). The binding reaction between avidin and biotin was detected by the catalytic voltammetry of Ru-bipy in an oxalate-containing electrolyte. On sputtered ITO thin film electrode, although a single layer of Ru-bipy labeled avidin exhibited substantial anodic current, attaching the label to the outer IgG layer of the avidin/biotin-IgG binding pair resulted in almost complete loss of the signal. However, electrochemical current was recovered on ITO film electrodes prepared from nanometer-sized particles. The surface of the nanoparticle structured electrode was found by scanning electron microscopy to be very porous, and had twice as much surface binding capacity for avidin as the sputtered electrode. The results were rationalized by the assumption of different packing density of avidin inner layer on the two surfaces, and consequently different electron transfer distance between the electrode and Ru-bipy on the IgG outer layer. A linear relationship between electrochemical current and IgG concentration was obtained in the range of 40-4000 nmol L−1 on the nanoparticle-based electrode. The approach can be employed in the electrochemical detection of immunoassays using non-enzymatic redox labels.  相似文献   

4.
A sensitive electrochemical aptasensor for detection of thrombin based on target protein‐induced strand displacement is presented. For this proposed aptasensor, dsDNA which was prepared by the hybridization reaction of the immobilized probe ssDNA (IP) containing thiol group and thrombin aptamer base sequence was initially immobilized on the Au electrode by self‐assembling via Au? S bind, and a single DNA labeled with CdS nanoparticles (DP‐CdS) was used as a detection probe. When the so prepared dsDNA modified Au electrode was immersed into a solution containing target protein and DP‐CdS, the aptamer in the dsDNA preferred to form G‐quarter structure with the present target protein resulting that the dsDNA sequence released one single strand and returned to IP strand which consequently hybridized with DP‐CdS. After dissolving the captured CdS particles from the electrode, a mercury‐film electrode was used for electrochemical detection of these Cd2+ ions which offered sensitive electrochemical signal transduction. The peak current of Cd2+ ions had a good linear relationship with the thrombin concentration in the range of 2.3×10?9–2.3×10?12 mol/L and the detection limit was 4.3×10?13 mol/L of thrombin. The detection was also specific for thrombin without being affected by the coexistence of other proteins, such as BSA and lysozyme.  相似文献   

5.
A facile and simple paper-based scanometric assay was developed to detect Pb2+ using GR5-DNAzyme. Magnetic beads (MBs) and gold nanoparticles (AuNPs) were used as a signal collector and a signal indicator, respectively. They were linked together by GR5-DNAzyme, comprising an enzyme and a substrate strand pairing up with each other. In the presence of Pb2+, the substrate strand is cut into two pieces, resulting in the disassembly of AuNPs from the MBs. These AuNPs were spotted on predefined areas on a chromatography paper, where signal is amplified through silver reduction. This sensing platform exhibits high sensitivity and selectivity toward Pb2+, giving a detection limit of 0.3 nM and a linear fitting range from 0.1 to 1000 nM. Testing of this biosensor in river water and synthetic urine samples also showed satisfying results. Besides offering simultaneous and multi-sample analysis, this paper-based sensing platform presented here could be potentially applied and served as a general platform for on-site, naked eyes, and low-cost monitoring of other heavy metal ions in environmental and body fluid samples.  相似文献   

6.
A simple competitive strategy was designed for the sensitive detection of sequence‐specific DNA by combining endonuclease‐assisted target recycling and electrochemical stripping analysis of silver nanoparticles (AgNPs). The AgNP‐tagged carbon nanospheres were synthesized by means of in situ reduction of Ag+ adsorbed onto a negatively charged polyelectrolyte layer and functionalized with streptavidin for binding biotin‐labeled DNA strands. The labeled strand was captured on the DNA sensor surface by competitive hybridization of biotinated primer 1 and its cleaved product. The cleaved product could be amplified in homogeneous solution by endonuclease‐assisted target recycling with a Y‐shaped junction DNA structure, thus leading to the correlation of the stripping signal to the target concentration. The functionalized nanosphere was characterized with X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The proposed method showed a linear range from 0.1 to 1000 fM with a limit of detection of 0.066 fM (3σ) and good selectivity for base discrimination. The designed strategy provided a sensitive tool for DNA analysis and could be widely applied in bioanalysis and biomedicine.  相似文献   

7.
Herein, a signal‐on sandwich‐type electrochemiluminescence (ECL) aptasensor for the detection of thrombin (TB) was proposed. The graphene (GR) doped thionine (TH) was electropolymerized synchronously on the bare glassy carbon electrode (GCE) to form co‐polymer (PTG) electrode. The gold nanoparticles (AuNPs) were decorated on the surface of the PTG by in‐situ electrodeposition, and the functional co‐polymer (PTG‐AuNPs) electrode was utilized as sensing interface. Then, TB binding aptamer I (TBA I) as capture probes were modified on the PTG‐AuNPs electrode to capture TB, and Ru(bpy)32+/silver nanoparticles doped silica core‐shell nanocomposites‐labeled TB binding aptamer II (RuAg/SiO2NPs@TBA II) were used as signal probes to further bind TB, resulting in a sandwich structure. With the assistant of silica shell and AgNPs, the enrichment and luminous efficiency of Ru(bpy)32+ were significantly improved. Under the synergy of PTG‐AuNPs and RuAg/SiO2NPs, the ECL signal was dramatically increased. The proposed ECL aptasensor displayed a wide linear range from 2 fM to 2 pM with the detection limit of 1 fM, which is comparable or better than that in reported ECL aptasensors for TB using Ru(bpy)32+ and its derivatives as the luminescent substance. The excellent sensitivity makes the proposed aptasensor a promising potential in pharmaceutical and clinical analysis.  相似文献   

8.
This work reports a new electrochemical monitoring platform for sensitive detection of Cu2+ coupling click chemistry with nanogold‐functionalized PAMAM dendrimer (AuNP‐PAMAM). The system involved an alkyne‐modified carbon electrode and an azide‐functionalized AuNP‐PAMAM. Initially, the added Cu2+ was reduced to Cu+ by the ascorbate, and then the azide‐modified AuNP‐PAMAM was covalently conjugated to the electrode via Cu+‐catalyzed azide‐alkyne click reaction. The carried AuNPs accompanying PAMAM dendrimer could be directly monitored by stripping voltammetry after acidic pretreatment. By introduction of high‐loading PAMAM dendrimer with gold nanoparticles, as low as 2.8 pM Cu2+ (ppt) could be detected, which was 125‐fold lower than that of gold nanoparticle‐based labeling strategy. The method exhibited high specificity toward target Cu2+ against other potentially interfering ions, and was applicable for monitoring Cu2+ in drinking water with satisfactory results.  相似文献   

9.
A rapid and sensitive DNA targets detection using enzyme amplified electrochemical detection (ED) based on microchip was described. We employed a biotin‐modified DNA, which reacted with avidin‐conjugated horseradish peroxidase (avidin–HRP) to obtain the HRP‐labeled DNA probe and hybridized with its complementary target. After hybridization, the mixture containing dsDNA‐HRP, excess ssDNA‐HRP, and remaining avidin–HRP was separated by MCE. The separations were performed at a separation voltage of +1.6 kV and were completed in less than 100 s. The HRP was used as catalytic labels to catalyze H2O2/o‐aminophenol reaction. Target DNA could be detected by the HRP‐catalyzed reduction with ED. With this protocol, the limits of quantification for the hybridization assay of 21‐ and 39‐mer DNA fragments were of 8×10?12 M and 1.2×10?11 M, respectively. The proposed method has been applied satisfactorily in the analysis of Escherichia coli genomic DNA. We selected the detection of PCR amplifications from the gene of E. coli to test the real applicability of our method. By using an asymmetric PCR protocol, we obtained ssDNA targets of 148 bp that could be directly hybridized by the single‐stranded probe and detected with ED.  相似文献   

10.
In this study, we developed an electrochemical sensor for sensitive detection of Cu2+ based on gold nanoflowers (AuNFs)‐modified electrode and DNAzyme functionalized Au@MIL‐101(Fe) (MIL: Materials of Institute Lavoisier). The AuNFs‐modified indium tin oxide modified conductive glass electrode(AuNFs/ITO) prepared via electrodeposition showed improved electronic transport properties and provided more active sites to adsorb large amounts of oligonucleotide substrate (DNA1) via thiol‐gold bonds. The stable Au@MIL‐101(Fe) could guarantee the sensitivity because of its intrinsic peroxidase mimic property, while the Cu2+‐dependent DNA‐cleaving DNAzyme linked to Au@MIL‐101(Fe) achieved the selectivity toward Cu2+. After the DNAzyme substrate strand (DNA2) was cleaved into two parts due to the presence of Cu2+, the oligonucleotide fragment linked to MIL‐101(Fe) was able to hybridize with DNA1 adsorbed onto the surface of AuNFs/ITO. Due to the peroxidase‐like catalytic activity of MIL‐101(Fe) and the affinity recognition property of DNAzyme toward Cu2+, the electrochemical biosensor showed a sensitive detection range from 0.001 to 100 μM, a detection limit of 0.457 nM and a high selectivity, demonstrating its potential for Cu2+ detection in real environmental samples.  相似文献   

11.
《Electroanalysis》2003,15(3):225-229
The interaction between avidin and biotin was evaluated electrochemically by monitoring the change in the electrode response of redox markers. Biotin was immobilized on the electrode surface by means of the electrochemical polymerization of biotinylated pyrrole and pyrrole. When avidin was introduced onto the biotinylated polypyrrole electrode surface, the large change in the electrode response of the redox marker was detected. The fact that the change in the electrode response of a marker ion could be attributed to the electrostatic interaction between avidin on the electrode surface and the redox marker ion present in a solution was verified by replacing avidin with NutrAvidin. At a pH lower than the isoelectric point of avidin, the electrode response of ferrocyanide as an anionic marker ion increased linearly within the range of 5.0×10?9 ?3.0×10?8 M avidin. The relative standard deviation at 1.5×10?8 M avidin was about 5.4% (n=5). The detection of biotin was also performed using a competitive reaction between biotin in solution and biotin that had been immobilized on the electrode surface in the form of the biotinylated polypyrrole.  相似文献   

12.
A sensitive electrochemical method for the detection of DNA hybridization based on the probe labeled with multiwall carbon‐nanotubes (MWNTs) loaded with silver nanoparticles (Ag‐MWNTs) has been developed. MWNTs were electroless‐plated with a large number of silver nanoparticles to form Ag‐MWNTs. Probe single strand DNA (ss‐DNA) with a thiol group at the 3′‐terminal labeled with Ag‐MWNTs by self‐assembled monolayer (SAM) technique was employed as an electrochemical probe. Target ss‐DNA with a thiol group was immobilized on a gold electrode by SAM technique and then hybridized with the electrochemical probe. Binding events were monitored by differential pulse voltammetric (DPV) signal of silver nanoparticles. The signal difference permitted to distinguish the match of two perfectly complementary DNA strands from the near perfect match where just three base pairs were mismatched. There was a linear relation between the peak current at +120 mV (vs. SCE) and complementary target ss‐DNA concentration over the range from 3.1×10?14 to 1.0×10?11 mol/L with a detection limit of 10 fmol/L of complementary target ss‐DNA. The proposed method has been successfully applied to detection of the DNA sequence related to cystic fibrosis. This work demonstrated that the MWNTs loaded with silver nanoparticles offers a great promising approach for sensitive detection of DNA hybridization.  相似文献   

13.
Glassy carbon electrodes (GCEs) modified with l-cysteine (l-cys)/gold nanoparticles (AuNPs)/nitrogen-doped graphene (NG) composite were prepared to fabricate a novel electrochemical sensor for lead. AuNPs were uniformly dispersed into NG and l-cys was successfully decorated on AuNPs through the S–Au bond. The l-cys/AuNPs/NG exhibited a well-distributed nanostructure and high responsivity toward Pb(II). The results indicated that l-cys/AuNPs/NG/GCE exhibited the highest peak current, reflecting that the l-cys/AuNPs/NG composites showed the best response signal toward Pb2+. Under optimized conditions, a linear relationship between the current intensity and Pb2+ concentration was obtained in a range of 0.5–80 μg L?1 with a detection limit of 0.056 μg L?1 (S/N = 3). The analytical interference procedure and practical application were investigated using the prepared electrode, which exhibited an acceptable result.  相似文献   

14.
In this report, a label‐free electrochemical aptasensor for carcino‐embryonic antigen (CEA) was successfully developed based on a ternary nanocomposite of gold nanoparticles, hemin and graphene nanosheets (AuNPs‐HGNs). This nanocomposite was prepared by decorating gold nanoparticles on the surface of hemin functionalized graphene nanosheets via a simple wet‐chemical strategy. The aptamer can be assembled on the surface of AuNPs‐HGNs/GCE (glassy carbon electrode) through Au‐S covalent bond to form the sensing interface. Hemin absorbed on the graphene nanosheets not only acts as a protective agent of graphene sheets, but also as an in situ probe base on its excellent redox properties. Gold nanoparticles provide with both numerous binding sites for loading CEA binding aptamer (CBA) and good conductivity to promote the electron transfer. The current changes, which are caused by CEA specifically binding on the modified electrode, are exploited for the label‐free detection of CEA in a very rapid and convenient protocol. Therefore, the method has advantages of high sensitivity, wide linear range (0.0001–10 ng mL?1), low detection limit (40 fg mL?1) and attractive specificity. The results illustrate that the proposed label‐free electrochemical aptasensor has a potential application in the biological or clinical target analysis for its simple operation and low cost.  相似文献   

15.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

16.
Herein we present β‐cyclodextrin (CD)‐functionalized reduced graphene oxide (RGO) nanosheets supported on silicate sol‐gel matrix‐embedded gold nanoparticles (Au NPs) modified electrode as a new affinity binding nanocomposite. The modified electrode is fabricated through layer‐by‐layer drop casting followed by immobilization of chemically modified enzyme conjugate (horse radish peroxidase (HRP)?adamantane carboxylic acid (ADA)). This affinity system is based on the supramolecular association between CDs and HRP?ADA and is mimicking the biological avidin?biotin interactions. CDs‐functionalized RGO (RGO?CD) functions as a macrocyclic host to form stable supramolecular inclusion complexes with enzyme conjugate. Besides Au NPs improve the interfacial interaction with RGO?CD nanosheets, and thus exhibit synergistic electrocatalytic effect toward H2O2 reduction in the presence of 1 mM hydroquinone.  相似文献   

17.
In this paper, a novel aptasensor was designed by with the dual amplification of Au nanoparticles (AuNPs) and graphene/thionine nanocomposites (GS‐TH) for sensitive determination of fumonisins B1 (FB1). AuNPs is modified at the electrode surface to increase the electrical conductivity and fabricate specific recognition interface for FB1 through the hybridization of capture DNA and its aptamer. Large number of TH molecules were loaded at the surface of graphene sheet to served as electrochemical probe and increase its electrochemical signal due to the excellent conductivity and large surface area of graphene sheet. This type of nanocomposites is then assembled to the single strand section of FB1 aptamer at electrode surface by π–π stacking interactions between them, leading to an enhanced electrochemical signal. After the specific combination between FB1 aptamer and its target (FB1) in solution, GS–TH was released from electrode surface, resulting in a decreased electrochemical signal. The result demonstrated that the decreased currents were proportional to the FB1 concentration in the range of 1–106 pg/mL with a detection limit of 1 pg/mL. Besides, the developed aptasensor was also applied successfully for the determination of FB1 in feed samples. The result shows this aptasensor has a higher sensitivity and selectivity.  相似文献   

18.
In this paper, an electrochemical aptamer sensor was proposed for the highly sensitive detection of mercury ion (Hg2+). Carbon nanofiber (CNF) was prepared by electrospinning and high‐temperature carbonization, which was used for the loading of platinum nanoparticles (PtNPs) by the hydrothermal method. The Pt@CNF nanocomposite was modified on the surface of carbon ionic liquid electrode (CILE) to obtain Pt@CNF/CILE, which was further decorated by gold nanoparticles (AuNPs) through electrodeposition to get Au/Pt@CNF/CILE. Self‐assembling of the thiol‐based aptamer was further realized by the formation of Au‐S bond to get an electrochemical aptamer sensor (Aptamer/Au/Pt@CNF/CILE). Due to the specific binding of aptamer probe to Hg2+ with the formation of T‐Hg2+‐T structure, a highly sensitive quantitative detection of Hg2+ could be achieved by recording the changes of current signal after reacting with Hg2+ within the concentration range from 1.0 × 10?15 mol/L to 1.0 × 10?6 mol/L and the detection limit of 3.33 × 10?16 mol/L (3σ). Real water samples were successfully analyzed by this method.  相似文献   

19.
The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6]3+ (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au–S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6]3+) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10 U mL−1 with a detection limit of 0.18 U mL−1 (S/N = 3), which might promise this method as a good candidate for monitoring DNA methylation in the future.  相似文献   

20.
A novel and highly sensitive electrochemical DNAzymes biosensor was fabricated using Au nanoparticles (AuNPs) immobilized on the surface of Au electrode that had been previously modified with self-assembled monolayers of 1,6-hexanedithiol. Different modified electrodes were prepared and characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The AuNPs were found to have a large surface area to anchor a large number of negatively charged phosphate backbones of DNAzymes, which further absorbed the electroactive indicator of hexaammineruthenium(III) ([Ru(NH3)6]3+) to amplify the electrochemical signal. In the presence of target molecules, a large amount of DNA partly associated with [Ru(NH3)6]3+ were removed from the electrode surface, leading to a significant decrease in peak current. Differential pulse voltammetry signals of [Ru(NH3)6]3+ provided quantitative measures of the concentrations of uranyl ion (UO2 2+), with linear calibration ranging from 13 pM to 0.15 nM and a detection limit of 5 pM. The presence of other metal ions did not affect the detection of UO2 2+, which indicated the high specificity of UO2 2+. Therefore, a new electrochemical DNAzymes sensor was designed with specific DNAzymes and AuNPs as immobilization platform and signal amplifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号