首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Discrete Mathematics》2020,343(1):111637
Huggett and Moffatt characterized all bipartite partial duals of a plane graph in terms of all-crossing directions of its medial graph. Then Metsidik and Jin characterized all Eulerian partial duals of a plane graph in terms of semi-crossing directions of its medial graph. Plane graphs are ribbon graphs with genus 0. In this paper, by introducing the notion of modified medial graphs and using their all-crossing directions, we first extend Huggett and Moffatt’s result from plane graphs to ribbon graphs. Then we characterize all Eulerian partial duals of any ribbon graph in terms of crossing-total directions of its medial graph, which are simpler than semi-crossing directions.  相似文献   

2.
It is well known that a plane graph is Eulerian if and only if its geometric dual is bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph.  相似文献   

3.
Whitney [7] proved in 1932 that for any two embeddings of a planar 3-connected graph, their combinatorial duals are isomorphic. In this manner, the term “uniquely embeddable planar graph” was introduced. It is a well-known fact that combinatorial and geometrical duals are equivalent concepts. In this paper, the concept of unique embeddability is introduced in terms of special types of isomorphisms between any two embeddings of a planar graph. From this, the class U of all graphs which are uniquely embeddable in the plane according to this definition, is determined, and the planar 3-connected graphs are a proper subset of U. It turns out that the graphs in U have a unique geometrical dual (i.e., for any two embeddings of such a graph, their geometrical duals are isomorphic). Furthermore, the theorems and their proofs do not involve any type of duals.  相似文献   

4.
We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which cannot be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion–contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable chequerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph GG can be expressed as a sum of chromatic polynomials of twisted duals of GG. This allows us to obtain a new reformulation of the Four Colour Theorem.  相似文献   

5.
《Discrete Mathematics》2007,307(3-5):633-640
A plane graph is dual-eulerian if it has an eulerian tour with the property that the same sequence of edges also forms an eulerian tour in the dual graph. Dual-eulerian graphs are of interest in the design of CMOS VLSI circuits.Every dual-eulerian plane graph also has an eulerian Petrie (left–right) tour thus we consider series-parallel extensions of plane graphs to graphs, which have eulerian Petrie tours. We reduce several special cases of extensions to the problem of finding hamiltonian cycles. In particular, a 2-connected plane graph G has a single series parallel extension to a graph with an eulerian Petrie tour if and only if its medial graph has a hamiltonian cycle.  相似文献   

6.
Rectangular drawings and rectangular duals can be naturally extended to other surfaces. In this paper, we extend rectangular drawings and rectangular duals to drawings on a cylinder. The extended drawings are called rectangular-radial drawings and rectangular-radial duals. Rectangular-radial drawings correspond to periodic rectangular tilings of a 1-dimensional strip. We establish a necessary and sufficient condition for plane graphs with maximum degree 3 to have rectangular-radial drawings and a necessary and sufficient condition for triangulated plane graphs to have rectangular-radial duals. Furthermore, we present three linear time algorithms under three different conditions for finding a rectangular-radial drawing for a given cubic plane graph, if one exists.  相似文献   

7.
Partial duality is a duality of ribbon graphs relative to a subset of their edges generalizing the classical Euler–Poincaré duality. This operation often changes the genus. Recently J.L. Gross, T. Mansour, and T.W. Tucker formulated a conjecture that for any ribbon graph different from plane trees and their partial duals, there is a subset of edges partial duality relative to which does change the genus. A family of counterexamples was found by Qi Yan and Xian’an Jin. In this note we prove that essentially these are the only counterexamples.  相似文献   

8.
Deciding whether a planar graph (even of maximum degree 4) is 3-colorable is NP-complete. Determining subclasses of planar graphs being 3-colorable has a long history, but since Grötzsch’s result that triangle-free planar graphs are such, most of the effort was focused to solving Havel’s and Steinberg’s conjectures. In this paper, we prove that every planar graph obtained as a subgraph of the medial graph of any bipartite plane graph is 3-choosable. These graphs are allowed to have close triangles (even incident), and have no short cycles forbidden, hence representing an entirely different class than the graphs inferred by the above mentioned conjectures.  相似文献   

9.
In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs with edges colored with two colors. We consider various graph classes (outerplanar graphs, partial 2-trees, partial 3-trees, planar graphs) and the problem is to find, for each class, the smallest number of vertices of a 2-edge-colored graph H such that each graph of the considered class admits a homomorphism to H.  相似文献   

10.
In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs with edges colored with two colors. We consider various graph classes (outerplanar graphs, partial 2-trees, partial 3-trees, planar graphs) and the problem is to find, for each class, the smallest number of vertices of a 2-edge-colored graph H such that each graph of the considered class admits a homomorphism to H.  相似文献   

11.
A weighted (unweighted) graph G is called equiarboreal if the sum of weights (the number) of spanning trees containing a given edge in G is independent of the choice of edge. In this paper, we give some resistance characterizations of equiarboreal weighted and unweighted graphs, and obtain the necessary and sufficient conditions for k-subdivision graphs, iterated double graphs, line graphs of regular graphs and duals of planar graphs to be equiarboreal. Applying these results, we obtain new infinite families of equiarboreal graphs, including iterated double graphs of 1-walk-regular graphs, line graphs of triangle-free 2-walk-regular graphs, and duals of equiarboreal planar graphs.  相似文献   

12.
Can a directed graph be completed to a directed line graph? If possible, how many arcs must be added? In this paper we address the above questions characterizing partial directed line (PDL) graphs, i.e., partial subgraph of directed line graphs. We show that for such class of graphs a forbidden configuration criterion and a Krausz's like theorem are equivalent characterizations. Furthermore, the latter leads to a recognition algorithm that requires O(m) worst case time, where m is the number of arcs in the graph. Given a partial line digraph, our characterization allows us to find a minimum completion to a directed line graph within the same time bound.The class of PDL graphs properly contains the class of directed line graphs, characterized in [J. Blazewicz, A. Hertz, D. Kobler, D. de Werra, On some properties of DNA graphs, Discrete Appl. Math. 98(1-2) (1999) 1-19], hence our results generalize those already known for directed line graphs. In the undirected case, we show that finding a minimum line graph edge completion is NP-hard, while the problem of deciding whether or not an undirected graph is a partial graph of a simple line graph is trivial.  相似文献   

13.
In this paper, we design the first polynomial time approximation scheme for d-hop connected dominating set (d-CDS) problem in growth-bounded graphs, which is a general type of graphs including unit disk graph, unit ball graph, etc. Such graphs can represent majority types of existing wireless networks. Our algorithm does not need geometric representation (e.g., specifying the positions of each node in the plane) beforehand. The main strategy is clustering partition. We select the d-CDS for each subset separately, union them together, and then connect the induced graph of this set. We also provide detailed performance and complexity analysis.  相似文献   

14.
In this paper, we introduce three operations on planar graphs that we call face splitting, double face splitting, and subdivision of hexagons. We show that the duals of the planar 4-connected graphs can be generated from the graph of the cube by these three operations. That is, given any graphG that is the dual of a planar 4-connected graph, there is a sequence of duals of planar 4-connected graphsG 0,G 1, …,G n such thatG 0 is the graph of the cube,G n=G, and each graph is obtained from its predecessor by one of our three operations. Research supported by a Sloan Foundation fellowship and by NSF Grant#GP-27963.  相似文献   

15.
In this paper, we present results on convex drawings of hierarchical graphs and clustered graphs. A convex drawing is a planar straight-line drawing of a plane graph, where every facial cycle is drawn as a convex polygon. Hierarchical graphs and clustered graphs are useful graph models with structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures.We first present the necessary and sufficient conditions for a hierarchical plane graph to admit a convex drawing. More specifically, we show that the necessary and sufficient conditions for a biconnected plane graph due to Thomassen [C. Thomassen, Plane representations of graphs, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, 1984, pp. 43–69] remains valid for the case of a hierarchical plane graph. We then prove that every internally triconnected clustered plane graph with a completely connected clustering structure admits a “fully convex drawing,” a planar straight-line drawing such that both clusters and facial cycles are drawn as convex polygons. We also present algorithms to construct such convex drawings of hierarchical graphs and clustered graphs.  相似文献   

16.
Deo and Micikevicius recently gave a new bijection for spanning trees of complete bipartite graphs. In this paper we devise a generalization of Deo and Micikevicius's method, which is also a modification of Olah's method for encoding the spanning trees of any complete multipartite graph K(n1,…,nr). We also give a bijection between the spanning trees of a planar graph and those of any of its planar duals. Finally we discuss the possibility of bijections for spanning trees of DeBriujn graphs, cubes, and regular graphs such as the Petersen graph that have integer eigenvalues.  相似文献   

17.
In the Minimum Sum Edge Coloring problem we have to assign positive integers to the edges of a graph such that adjacent edges receive different integers and the sum of the assigned numbers is minimal. We show that the problem is (a) NP-hard for planar bipartite graphs with maximum degree 3, (b) NP-hard for 3-regular planar graphs, (c) NP-hard for partial 2-trees, and (d) APX-hard for bipartite graphs.  相似文献   

18.
A topological graph is a graph drawn in the plane. A topological graph is k-plane, k>0, if each edge is crossed at most k times. We study the problem of partitioning the edges of a k-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1, we focus on optimal 2-plane and on optimal 3-plane graphs, which are 2-plane and 3-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple (i.e., with neither self-loops nor parallel edges) optimal 2-plane graph into a 1-plane graph and a forest, while (ii) an edge partition formed by a 1-plane graph and two plane forests always exists and can be computed in linear time. (iii) There exist efficient algorithms to partition the edges of a simple optimal 2-plane graph into a 1-plane graph and a plane graph with maximum vertex degree at most 12, or with maximum vertex degree at most 8 if the optimal2-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) There exists an infinite family of simple optimal 2-plane graphs such that in any edge partition composed of a 1-plane graph and a plane graph, the plane graph has maximum vertex degree at least 6 and the 1-plane graph has maximum vertex degree at least 12. (v) Every optimal 3-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 2-plane graph and two plane forests.  相似文献   

19.
A straight-line planar drawing of a plane graph is called a convex drawing if every facial cycle is drawn as a convex polygon. Convex drawings of graphs is a well-established aesthetic in graph drawing, however not all planar graphs admit a convex drawing. Tutte [W.T. Tutte, Convex representations of graphs, Proc. of London Math. Soc. 10 (3) (1960) 304–320] showed that every triconnected plane graph admits a convex drawing for any given boundary drawn as a convex polygon. Thomassen [C. Thomassen, Plane representations of graphs, in: Progress in Graph Theory, Academic Press, 1984, pp. 43–69] gave a necessary and sufficient condition for a biconnected plane graph with a prescribed convex boundary to have a convex drawing.In this paper, we initiate a new notion of star-shaped drawing of a plane graph as a straight-line planar drawing such that each inner facial cycle is drawn as a star-shaped polygon, and the outer facial cycle is drawn as a convex polygon. A star-shaped drawing is a natural extension of a convex drawing, and a new aesthetic criteria for drawing planar graphs in a convex way as much as possible. We give a sufficient condition for a given set A of corners of a plane graph to admit a star-shaped drawing whose concave corners are given by the corners in A, and present a linear time algorithm for constructing such a star-shaped drawing.  相似文献   

20.
Carsten Thomassen 《Order》1989,5(4):349-361
A plane Hasse representation of an acyclic oriented graph is a drawing of the graph in the Euclidean plane such that all arcs are straight-line segments directed upwards and such that no two arcs cross. We characterize completely those oriented graphs which have a plane Hasse representation such that all faces are bounded by convex polygons. From this we derive the Hasse representation analogue, due to Kelly and Rival of Fary's theorem on straight-line representations of planar graphs and the Kuratowski type theorem of Platt for acyclic oriented graphs with only one source and one sink. Finally, we describe completely those acyclic oriented graphs which have a vertex dominating all other vertices and which have no plane Hasse representation, a problem posed by Trotter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号