首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimeric rhodium(I) complex [Rh(OMe)(cod)]2 was found to be an active catalyst of phenylacetylene polymerization to poly(phenylacetylene) (PPA) in ionic liquids containing imidazolium or pyridinium cations. The highest yield of PPA (92%) was obtained in 1‐butyl‐4‐methylpyridinium tetrafluoroborate as reaction medium. The yield of PPA in imidazolium ionic liquids containing BF4? or PF6? anions increased to 83–99% when Et3N or cycloocta‐1,5‐diene were added as co‐catalysts. In 1‐methyl‐3‐octylimidazolium chloride (MOI · Cl) polymerization rate was much lower than in other ionic liquids, although the highest Mw (72 400) was obtained. Spectroscopic studies confirmed that [Rh(OMe)(cod)]2 reacted with MOI · Cl forming new carbene Rh(I) complex, which can participate in the polymerization process. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The contributions of the amino and imino resonance forms to the ground‐state structures of 2‐amino‐4‐methylpyridinium nitrate, C6H9N2+·NO3, and the previously reported 2‐amino‐5‐methylpyridinium nitrate [Yan, Fan, Bi, Zuo & Zhang (2012). Acta Cryst. E 68 , o2084], were studied using a combination of IR spectroscopy, X‐ray crystallography and density functional theory (DFT). The results show that the structures of 2‐amino‐4‐methylpyridine and 2‐amino‐5‐methylpyridine obtained upon protonation are best described as existing largely in the imino resonance forms.  相似文献   

3.
Crystals of bis(2‐ethyl‐3‐hydroxy‐6‐methylpyridinium) succinate–succinic acid (1/1), C8H12NO+·0.5C4H4O42−·0.5C4H6O4, (I), and 2‐ethyl‐3‐hydroxy‐6‐methylpyridinium hydrogen succinate, C8H12NO+·C4H5O4, (II), were obtained by reaction of 2‐ethyl‐6‐methylpyridin‐3‐ol with succinic acid. The succinate anion and succinic acid molecule in (I) are located about centres of inversion. Intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds are responsible for the formation of a three‐dimensional network in the crystal structure of (I) and a two‐dimensional network in the crystal structure of (II). Both structures are additionally stabilized by π–π interactions between symmetry‐related pyridine rings, forming a rod‐like cationic arrangement for (I) and cationic dimers for (II).  相似文献   

4.
《Electroanalysis》2017,29(9):2044-2052
This paper demonstrated using polyethylenimine (PEI)‐functionalized graphene (Gr) incorporating tin oxide (SnO2) hybrid nanocomposite as a platform for nonenzymatic H2O2 electrochemical sensor. The results of UV‐vis spectroscopy and X‐ray diffraction (XRD) confirmed the simultaneous formation of tin oxide (SnO2) nanocomposite and reduction of graphene oxide (GO). Transmission electron microscopy (TEM) images showed a uniform distribution of nanometer‐sized tin oxide nanoparticles on the grapheme sheets, which could be achieved using stannous chloride (SnCl2) complex instead of tin oxide as precursor. The electrochemical measurements, including cyclic voltammetry (CV) and amperometric performance (I‐t), showed that the PEI‐functionalized Gr supported SnO2 (SnO2‐PEI‐Gr) exhibited an excellent electrocatalytic activity toward the H2O2. The corresponding calibration curve of the current response showed a linear detection range of 9×10−6∼1.64×10−3 mol L−1, while the limit of detection was estimated to be 1×10−6 mol L−1. Electrochemical studies indicated that SnO2 and functionalized Gr worked synergistically for the detection of H2O2.  相似文献   

5.
The title compound, [Cd(NCS)2(C13H10N4OS)2]n, contains SCN anions acting as end‐to‐end bridging ligands which utilize both S and N atoms to link cadmium(II) centers into one‐dimensional double chains. The multidentate 5‐(4‐pyridyl)‐2‐(2‐pyridylmethylsulfanyl)‐1,3,4‐oxadiazole ligands behave as monodentate terminal ligands, binding metal centers only through the N atoms of the 4‐pyridyl groups. Two types of eight‐membered rings are formed by two SCN anions bridging CdII centers, viz. planar and chair conformation, which are alternately disposed along the same chain. Finally, chains define a two‐dimensional array through two different interchain π–π stacking interactions.  相似文献   

6.
A novel method for the highly efficient and reversible capture of CO in carbanion‐functionalized ionic liquids (ILs) by a C‐site interaction is reported. Because of its supernucleophilicity, the carbanion in ILs could absorb CO efficiently. As a result, a relatively high absorption capacity for CO (up to 0.046 mol mol−1) was achieved under ambient conditions, compared with CO solubility in a commonly used IL [Bmim][Tf2N] (2×10−3 mol mol−1). The results of quantum mechanical calculations and spectroscopic investigation confirmed that the chemical interaction between the C‐site in the carbanion and CO resulted in the superior CO absorption capacities. Furthermore, the subsequent conversion of captured CO into valuable chemicals with good reactivity was also realized through the alkoxycarbonylation reaction under mild conditions. Highly efficient CO absorption by carbanion‐functionalized ILs provides a new way of separating and converting CO.  相似文献   

7.
A new flexible cationic Zn(II)metal organic framework, {[Zn2(BDC)1.5(L)(DMF)]NO3·DMF·solvent}n, MOF 1 , which is a corrugated two-dimensional network, was synthesized by self-assembly of Zn(NO3)2.6H2O with 4,4′-methylenebis(N-(pyridin-2-ylmethylene)aniline as a neutral ligand and terephthalic acid in dimethyl formamide (DMF) as solvent and characterized by X-ray diffraction. Because of the presence of uncoordinated nitrate (NO3) ions in the channels, the compound was employed for ion-exchange applications. We report a detailed study of the host–guest interaction for a cationic metal–organic framework (MOF) that can reversibly capture nitrate. The recrystallization of the MOF was evaluated by monitoring the anion exchange dynamics using a combination of powder X-ray diffraction and Fourier transform infrared spectra with various kinds of foreign anions. This MOF showed fast and highly efficient Cr2O72− and CrO42−, N3, MnO4, and SCN exchange. The trapping capacities of Cr2O72−, CrO42−, N3, MnO4, and SCN were 105,138, 44,104, and 25mg/g at 25°C after 3h, respectively, and there was good recyclability for capturing N3 and SCN. {[Zn2(BDC)1.5(L)(DMF)]NO3}n exhibited anion exchange selectivity of SCN in a solution containing a mixture of 0.025mmol N3, SCN, CrO4−2−, Cr2O72−, and MnO4 for 3h and exhibited anion exchange selectivity for SCN and Cr2O72− in a solution containing a mixture of 0.001mmol N3, SCN, CrO42−, Cr2O72−, and MnO4.  相似文献   

8.
The formal potentials and the kinetics parameters for the electrode process: Cr2++2 e = Cro occurring at a mercury electrode in solutions of NaClO4, NaCI, NaBr, and NaSCN, were determined from the analysis of irreversible anodic and cathodic chronocoulometric waves. The interaction of Cr(II) with Cl was found to be negligible (equilibrium constant K <1) whereas the interaction with Br and SCN was weak (K1(Br)=1 M−1 and β2(SCN) = 25 M−2). The results of the analysis of the formal rate constant of this and other amalgam forming reactions suggested that the formation of amalgam was the most important step in the whole process.  相似文献   

9.
Cylindrical samples (≈5 mm × 20 mm) of poly(2‐hydroxyethyl methacrylate) and copolymers of 2‐hydroxyethyl methacrylate and furfuryl methacrylate were prepared, and the sorption of water into these cylinders was studied by the mass‐uptake method and by the measurement of the volume change at equilibrium. The equilibrium water content and volume change for the cylinders both varied systematically with the copolymer composition. The diffusion of water into the cylinders followed Fickian behavior, with the diffusion coefficients, dependent on the copolymer composition, varying from 2.00 × 10−11 m2s−1 for poly(2‐hydroxyethyl methacrylate) to 5.00 × 10−12 m2s−1 for poly(2‐hydroxyethyl methacrylate‐co‐tetrahydrofurfuryl methacrylate) with a 1 : 4 composition. The polymers that were rich in 2‐hydroxyethyl methacrylate were characterized by a water‐sorption overshoot, which was attributed to a slow reorientation of the polymer chains in the swollen rubbery regions formed after water sorption. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1939–1946, 2000  相似文献   

10.
A series of low‐melting‐point salts with hexakisdicyanonitrosomethanidolanthanoidate anions has been synthesised and characterised: (C2mim)3[Ln(dcnm)6] ( 1 Ln ; 1 Ln = 1 La , 1 Ce , 1 Pr , 1 Nd ), (C2C1mim)3[Pr(dcnm)6] ( 2 Pr ), (C4C1pyr)3[Ce(dcnm)6] ( 3 Ce ), (N1114)3[Ln(dcnm)6] ( 4 Ln ; 4 Ln = 4 La , 4 Ce , 4 Pr , 4 Nd , 4 Sm , 4 Gd ), and (N1112OH)3[Ce(dcnm)6] ( 5 Ce ) (C2mim=1‐ethyl‐3‐methylimidazolium, C2C1mim=1‐ethyl‐2,3‐dimethylimidazolium, C4C1py=N‐butyl‐4‐methylpyridinium, N1114=butyltrimethylammonium, N1112OH=2‐(hydroxyethyl)trimethylammonium=choline). X‐ray crystallography was used to determine the structures of complexes 1 La , 2 Pr , and 5 Ce , all of which contain [Ln(dcnm)6]3? ions. Complexes 1 Ln and 2 Pr were all ionic liquids (ILs), with complex 3 Ce melting at 38.1 °C, the lowest melting point of any known complex containing the [Ln(dcnm)6]3? trianion. The ammonium‐based cations proved to be less suitable for forming ILs, with complexes 4 Sm and 4 Gd being the only salts with the N1114 cation to have melting points below 100 °C. The choline‐containing complex 5 Ce did not melt up to 160 °C, with the increase in melting point possibly being due to extensive hydrogen bonding, which could be inferred from the crystal structure of the complex.  相似文献   

11.
Crystals of 1‐(diaminomethylene)thiouron‐1‐ium chloride, C2H7N4S+·Cl, 1‐(diaminomethylene)thiouron‐1‐ium bromide, C2H7N4S+·Br, and 1‐(diaminomethylene)thiouron‐1‐ium iodide, C2H7N4S+·I, are built up from the nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective halogenide anion. The conformation of the 1‐(diaminomethylene)thiouron‐1‐ium cation in each case is twisted. Both arms of the cation are planar and rotated in opposite directions around the C—N bonds involving the central N atom. The dihedral angles describing the twisted conformation are 22.9 (1), 15.2 (1) and 4.2 (1)° in the chloride, bromide and iodide salts, respectively. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into a supramolecular network. The aim of the investigation is to study the influence of the size of the ionic radii of the Cl, Br and I ions on the dimensionality of the hydrogen‐bonding network of the 1‐(diaminomethylene)thiouron‐1‐ium cation. The 1‐(diaminomethylene)thiouron‐1‐ium system should be of use in crystal engineering to form multidimensional networks.  相似文献   

12.
The cation‐templated self‐assembly of 1,4‐bis(2‐methyl‐1H‐imidazol‐1‐yl)butane (bmimb) with CuSCN gives rise to a novel two‐dimensional network, namely catena‐poly[2,2′‐dimethyl‐1,1′‐(butane‐1,4‐diyl)bis(1H‐imidazol‐3‐ium) [tetra‐μ2‐thiocyanato‐κ4S:S4S:N‐dicopper(I)]], {(C12H20N4)[Cu2(NCS)4]}n. The CuI cation is four‐coordinated by one N and three S atoms, giving a tetrahedral geometry. One of the two crystallographically independent SCN anions acts as a μ2S:S bridge, binding a pair of CuI cations into a centrosymmetric [Cu2(NCS)2] subunit, which is further extended into a two‐dimensional 44‐sql net by another kind of SCN anion with an end‐to‐end μ2S:N coordination mode. Interestingly, each H2bmimb dication, lying on an inversion centre, threads through one of the windows of the two‐dimensional 44‐sql net, giving a pseudorotaxane‐like structure. The two‐dimensional 44‐sql networks are packed into the resultant three‐dimensional supramolecular framework through bmimb–SCN N—H...N hydrogen bonds.  相似文献   

13.
Single crystals of the anhydrous form of the title compound {systematic name: 1‐[3‐(dimethylcarbamoyl)‐3,3‐diphenylpropyl]‐4‐hydroxy‐4‐(4‐chlorophenyl)piperidin‐1‐ium chloride}, C29H34ClN2O2+·Cl, were obtained by diffusion of acetone into a solution in 2‐propanol. In the structure, N—H...Cl and O—H...Cl hydrogen bonds connect neighbouring molecules and chloride anions to form chains along the c‐axis direction. Neighbouring chains along the b‐axis direction are connected by intermolecular C—H...Cl contacts, defining layers parallel to the (100) planes. The layers are connected by weak intermolecular C—H...Cl interactions only, which may account for the plate‐like shape of the crystals.  相似文献   

14.
《化学:亚洲杂志》2017,12(2):194-197
Insertion of 3‐hydroxypropanesulfonicacid (HPS) in the graphene oxide (GO) interlayer results in high proton conductivity (10−2–10−1 S cm−1), owing to an improvement in oxygen content, interlayer distance and water absorbing capacity. This result indicates that hydroxyalkylsulfonicacids can be perfect guest molecules for improving the proton conductivity of carbon materials.  相似文献   

15.
Metal–organic framework (MOF) materials have an enormous potential in separation applications, but to realize their potential as semipermeable membranes they need to be assembled into thin continuous macroscopic films for fabrication into devices. By using a facile immersion technique, we prepared ultrathin, continuous zeolitic imidazolate framework (ZIF‐8) membranes on titania‐functionalized porous polymeric supports. The coherent ZIF‐8 layer was surprisingly flexible and adhered well to the support, and the composite membrane could sustain bending and elongation. The membranes exhibited molecular sieving behavior, close to the theoretical permeability of ZIF‐8, with hydrogen permeance up to 201×10−7 mol m−2 s−1 Pa−1 and an ideal H2/CO2 selectivity of 7:1. This approach offers significant opportunities to exploit the unique properties of MOFs in the fabrication of separation and sensing devices.  相似文献   

16.
The title salt, C18H46N2O2Si22+·2Cl, has been synthesized by reaction of N,N′‐bis(2‐hydroxyethyl)ethylenediamine with tert‐butyldimethylsilyl chloride. The zigzag backbone dication is located across an inversion centre and the two chloride anions are related by inversion symmetry. The ionic components form a supramolecular two‐dimensional network via N—H...Cl hydrogen bonding, which is responsible for the high melting point compared with the oily compound N,N′‐bis[2‐(tert‐butyldimethylsiloxy)ethyl]ethylenediamine.  相似文献   

17.
A series of chiral pyrrolidinium salts containing (1 S)-endo-(−)-born-2-yloxymethyl substituent in the structure of the cation and six different anions: chloride, tetrafluoroborate [BF4], hexafluorophosphate [PF6], trifluoromethanesulfonate [OTf], bis(trifluoromethylsulfonyl)imide [NTf2], bis(pentafluoroethylsulfonyl)imide [NPf2] and perfluorobutanesulfonate [C4FS] were efficiently prepared and extensively characterized. The enantiomeric purity of them was confirmed by NMR analysis with a chemical shift reagent. All salts were characterized with the specific rotation, the solubility in commonly used solvents, thermal properties, including phase transition temperatures and thermal stability. Salts with [PF6], [C4FS], [NTf2] and [NPf2] anions were classified as chiral ionic liquids (CILs). Moreover, salts with [NTf2] and [NPf2] anions were in the liquid state at room temperature and below. Therefore, density and dynamic viscosity, the surface tension and the contact angle on three different surfaces were also measured for them. Additionally, these chiral ionic liquids were tested as solvents in Diels-Alder reaction.  相似文献   

18.
It is possible that fluorous compounds could be utilized as directing forces in crystal engineering for applications in materials chemistry or catalysis. Although numerous fluorous compounds have been used for various applications, their structures in the solid state remains a lively matter for debate. The reaction of 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridine with HX (X = I or Cl) yielded new fluorous ponytailed pyridinium halide salts, namely 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium iodide, C8H9F3NO+·I, (1), and 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium chloride, C8H9F3NO+·Cl, (2), which were characterized by IR spectroscopy, multinuclei (1H, 13C and 19F) NMR spectroscopy and single‐crystal X‐ray diffraction. Structure analysis showed that there are two types of hydrogen bonds, namely N—H…X and C—H…X. The iodide anion in salt (1) is hydrogen bonded to three 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations in the crystal packing, while the chloride ion in salt (2) is involved in six hydrogen bonds to five 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations, which is attributed to the smaller size and reduced polarizability of the chloride ion compared to the iodide ion. In the IR spectra, the pyridinium N—H stretching band for salt (1) exhibited a blue shift compared with that of salt (2).  相似文献   

19.
The reactions of p‐nitrophenyl acetate (PNPA) with a series of monopyridinium oximes, viz. 2‐PAM (2‐hydroxyiminomethyl‐1‐methylpyridinium iodide), 3‐PAM (3‐hydroxyiminomethyl‐1‐methylpyridinium iodide), and 4‐PAM (4‐hydroxyiminomethyl‐1‐methylpyridinium iodide) have been studied in the presence of cationic surfactants of same hydrophobic chain length (C16) within the concentration range of 0.5–6.0 mM at pH 8.0 under the pseudo‐first‐order condition. The observed rate constant (kobs) increases with increasing surfactant concentration culminating into a maximum, and this has been analyzed in detail following the concepts of micellar catalysis. The structure–activity relationship of the investigated oximes has been discussed, and 2‐PAM was found to be the most reactive among all the three investigated oximes for the cleavage of PNPA. Esterolytic decomposition of p‐nitrophenyldiphenyl phosphate with oximate ions (? CH?NO?) was followed in cetyltrimethylammonium bromide micelles at pH 9.0, and 4‐PAM was the most reactive oxime for the micellar hydrolysis of phosphate ester. The apparent acid dissociation constants (pKa) of the investigated oximes have been determined spectrophotometrically. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 569–578, 2011  相似文献   

20.
Proton transfer to the sulfa drug sulfadiazine [systematic name: 4‐amino‐N‐(pyrimidin‐2‐yl)benzenesulfonamide] gave eight salt forms. These are the monohydrate and methanol hemisolvate forms of the chloride (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium chloride monohydrate, C10H11N4O2S+·Cl·H2O, (I), and 2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium chloride methanol hemisolvate, C10H11N4O2S+·Cl·0.5CH3OH, (II)); a bromide monohydrate (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium bromide monohydrate, C10H11N4O2S+·Br·H2O, (III)), which has a disordered water channel; a species containing the unusual tetraiodide dianion [bis(2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium) tetraiodide, 2C10H11N4O2S+·I42−, (IV)], where the [I4]2− ion is located at a crystallographic inversion centre; a tetrafluoroborate monohydrate (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium tetrafluoroborate monohydrate, C10H11N4O2S+·BF4·H2O, (V)); a nitrate (2‐{[(4‐azaniumylphenyl)sulfonyl]azanidyl}pyrimidin‐1‐ium nitrate, C10H11N4O2S+·NO3, (VI)); an ethanesulfonate {4‐[(pyrimidin‐2‐yl)sulfamoyl]anilinium ethanesulfonate, C10H11N4O2S+·C2H5SO3, (VII)}; and a dihydrate of the 4‐hydroxybenzenesulfonate {4‐[(pyrimidin‐2‐yl)sulfamoyl]anilinium 4‐hydroxybenzenesulfonate dihydrate, C10H11N4O2S+·HOC6H4SO3·2H2O, (VIII)}. All these structures feature alternate layers of cations and of anions where any solvent is associated with the anion layers. The two sulfonate salts are protonated at the aniline N atom and the amide N atom of sulfadiazine, a tautomeric form of the sulfadiazine cation that has not been crystallographically described before. All the other salt forms are instead protonated at the aniline group and on one N atom of the pyrimidine ring. Whilst all eight species are based upon hydrogen‐bonded centrosymetric dimers with graph set R22(8), the two sulfonate structures also differ in that these dimers do not link into one‐dimensional chains of cations through NH3‐to‐SO2 hydrogen‐bonding interactions, whilst the other six species do. The chloride methanol hemisolvate and the tetraiodide are isostructural and a packing analysis of the cation positions shows that the chloride monohydrate structure is also closely related to these.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号