首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, novel psychoactive drugs for human abuse such as amphetamines, phenethylamines, benzofuries, and tryptamines, cathinones have gained high popularity. These designer drugs are mainly sold via online stores as “bath salts” and are labeled “not for human consumption.” Due to the novelty of the compounds, only a little information about pharmacology, toxicology, and the long‐term damage they may cause is available. Moreover, there are only few analytical methods for their identification and analysis. Among new cathinone derivatives, 1‐(3,4‐dimethoxyphenyl)‐2‐(ethylamino)pentan‐1‐one (DL‐4662), became available via an internet shop. A sample of this compound was purchased and investigated. The first aim of our study was an identity check by NMR spectroscopy and gas chromatography with mass spectrometry. As many of the recreational drugs are chiral and are mainly sold as racemates, a further goal of our research was enantioseparation by gas chromatography with mass spectrometry and high‐performance liquid chromatography with UV detection, to prove whether DL‐4662 was traded enantiomerically pure or as racemic mixture. Both chiral separation methods showed the presence of a racemate.  相似文献   

2.
New psychoactive substances represent serious social and health problem as tens of new compounds are detected in Europe annually. They often show structural proximity or even isomerism, which complicates their analysis. Two methods based on ultra high performance supercritical fluid chromatography and ultra high performance liquid chromatography with mass spectrometric detection were validated and compared. A simple dilute‐filter‐and‐shoot protocol utilizing propan‐2‐ol or methanol for supercritical fluid or liquid chromatography, respectively, was proposed to detect and quantify 15 cathinones and phenethylamines in human urine. Both methods offered fast separation (<3 min) and short total analysis time. Precision was well <15% with a few exceptions in liquid chromatography. Limits of detection in urine ranged from 0.01 to 2.3 ng/mL, except for cathinone (5 ng/mL) in supercritical fluid chromatography. Nevertheless, this technique distinguished all analytes including four pairs of isomers, while liquid chromatography was unable to resolve fluoromethcathinone regioisomers. Concerning matrix effects and recoveries, supercritical fluid chromatography produced more uniform results for different compounds and at different concentration levels. This work demonstrates the performance and reliability of supercritical fluid chromatography and corroborates its applicability as an alternative tool for analysis of new psychoactive substances in biological matrixes.  相似文献   

3.
In the past decade, more than 100 different cathinone derivatives slopped over entire Europe due to their enormous popularity. Generally, these novel psychoactive substances are easily available via the internet. This fact leads to various social problems, since cathinones are substances with consciousness‐changing effects and are mainly misused for recreational matters by their consumers. Cathinones possess a chiral center including two enantiomeric forms with potentially different pharmacological behavior. This fact makes analytical method development regarding their chiral separation indispensable. In this study, a chiral capillary zone electrophoresis method for the enantioseparation of 61 cathinone and pyrovalerone derivatives was developed by means of four different β‐cyclodextrin derivatives. As chiral selectors, native β‐cyclodextrin as well as three of its derivatives namely acetyl‐β‐cyclodextrin, 2‐hydroxypropyl‐β‐cyclodextrin, and carboxymethyl‐β‐cyclodextrin were used. The cathinone and pyrovalerone derivatives were either purchased in internet stores or seized by police. As a result, overall 58 of 61 studied substances were partially or baseline separated by at least one of the four chiral selectors using 10 mM of β‐cyclodextrin derivative in a 10 mM sodium phosphate buffer (pH 2.5). Furthermore, the method was found to be suitable for simultaneous enantioseparations, for enantiomeric purity checks and to differentiate between positional isomers. Moreover, an intra‐ and an interday validation was performed successfully for each chiral selector to prove the robustness of the method.  相似文献   

4.
New psychoactive substances represent a public health threat since they are not controlled by international conventions, are easily accessible online and are sold as a legal alternative to illicit drugs. Among them, synthetic cathinones are widely abused due to their stimulant and hallucinogenic effects. To circumvent the law, new derivatives are clandestinely synthesized and, therefore, synthetic cathinones keep emerging on the drug market, with their chemical and toxicological properties still unknown. In this review, a literature assessment about synthetic cathinones is presented focusing on the recent developments, which include more than 50 derivatives since 2014. A summary of their toxicokinetic and toxicodynamic properties are also presented. Furthermore, synthetic cathinones are chiral compounds, meaning that they can exist as two enantiomeric forms which may present different biological and toxicological activities. To analyze the enantiomers, the development of enantiomeric resolution methods for synthetic cathinones is crucial. Many methods have been reported over the years that include mostly chromatographic and electromigration techniques, with liquid chromatography using chiral stationary phases being the technique of choice. This review intended to present an overview of enantioselectivity studies and enantioseparation analysis regarding synthetic cathinones, highlighting the relevance of chirality and current trends.  相似文献   

5.
A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite‐5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended.  相似文献   

6.
The separation of enantiomers by chromatographic methods, such as gas chromatography, high‐performance liquid chromatography and capillary electrochromatography, has become an increasingly significant challenge over the past few decades due to the demand of pharmaceutical, agrochemical, and food analysis. Among these chromatographic resolution methods, high‐performance liquid chromatography based on chiral stationary phases has become the most popular and effective method used for the analytical and preparative separation of optically active compounds. This review mainly focuses on the recent development trends for novel chiral stationary phases based on chitosan derivatives, cyclofructan derivatives, and chiral porous materials that include metal‐organic frameworks and covalent organic frameworks in high‐performance liquid chromatography. The enantioseparation performance and chiral recognition mechanisms of these newly developed chiral selectors toward enantiomers are discussed in detail.  相似文献   

7.
汤文川  常靖  王元凤  王爱华  王瑞花 《色谱》2021,39(3):271-280
对映异构体在自然界中普遍存在,在药物化学领域尤为突出。虽然手性药物的对映异构体之间具有相同的化学结构,但它们在药理、毒理、药代动力学、代谢等生物活性方面存在明显差异。苯丙胺类、氯胺酮、卡西酮类毒品也是如此,这3类毒品的手性分离研究在常见毒品中具有代表性。目前常用的手性分离色谱方法有气相色谱法(GC)、高效液相色谱法(HPLC)和毛细管电泳法(CE)。苯丙胺类、氯胺酮、卡西酮类毒品使用以上3种方法进行的手性分离研究具有一定共性:GC较多使用N-三氟乙酰-L-脯胺酰氯和(+)R-α-甲氧基α-三氟甲基苯乙酸两种典型的手性衍生化试剂,HPLC主要应用蛋白质类、多聚糖类和大环抗生素类3种手性固定相,CE中环糊精及其衍生物是最常用的手性选择剂。然而这3种手性分离方法存在各自的不足,GC存在手性衍生化引入杂质、反应温度高影响手性分离等问题,HPLC的应用范围比较有限,成本较高,CE没有明确的方法判断哪种物质是合适的手性选择剂。近年来,这3类毒品的手性分离研究在法医毒物学领域的应用有各自的特点,苯丙胺类毒品的手性分离研究多用于推断市场上毒品的原型及合成路线,氯胺酮的手性分离研究涉及多种生物检材,卡西酮类毒品侧重于手性分离方法的广泛适用性。该文主要遴选近10年国内外核心期刊的文献,对苯丙胺类、氯胺酮、卡西酮类毒品的手性异构体特点及色谱法的手性识别机理进行简单介绍,重点对已有研究的共性以及手性分离在法医毒物学中的应用等内容进行综述。基于以上研究,该文提出未来可以从以下3个方面进行深入研究:一是利用计算机技术建立分子模型深入探究手性识别机理;二是研发新型技术,对超临界流体法进行商用研究;三是将手性分离应用于司法实践、医药研发等实际工作领域。  相似文献   

8.
Most routine practices for drugs‐of‐abuse testing do not include screening procedures for new psychoactive substances, despite their increasing diffusion, preventing clear knowledge of the real consumption of these drugs in the populations. To make up for this shortcoming, a gas chromatography with mass spectrometry method was developed for the simultaneous determination of 18 synthetic cathinones and one amphetamine‐like compound in human urine. The sample preparation was based on liquid–liquid extraction under alkaline condition followed by derivatization with trifluoroacetic anhydride. The separation of the 19 analytes was achieved in less than 10 min. The whole methodology was validated according to national and international guidelines. Selectivity, linearity range, limit of detection and limit of quantitation, precision and accuracy were evaluated. For all the analytes, the calibration curve was linear in the 100–1000 ng/mL concentration range. The limits of detection ranged from 10 to 30 ng/mL and limits of quantitation from 30 to 100 ng/mL. Precisions were in the ranges 0.1–10.4%, and 1.0–12.1% for low (100 ng/mL) and high (1000 ng/mL) concentration, respectively. The accuracy, expressed as bias% was within ±20% for all the analytes. The present method was successfully applied to urine samples originating from autopsies, drug abuse/withdrawal controls, clinical investigations, roadside controls, driving re‐licensing, and workplace testing.  相似文献   

9.
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task‐specific ionic liquids. Various task‐specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task‐specific ionic liquids are generally used in techniques such as liquid–liquid extraction, solid‐phase extraction, gas chromatography, high‐performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task‐specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification.  相似文献   

10.
A simple and environmentally friendly reversed‐phase high‐performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose‐based Chiralpak IC‐3 chiral stationary phase using a green and low‐toxicity ethanol‐aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed‐mode hydrophilic interaction liquid chromatography and reversed‐phase retention mechanism operating on the IC‐3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water‐rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min.  相似文献   

11.
色谱法测定手性四面体金属簇合物对映体过量值   总被引:2,自引:0,他引:2  
在自制的直链淀粉-三(苯基氨基甲酸酯)(ATPC)高效液相色谱手性固定相(HPLC-CSP)上,优化了手性四面体金属簇合物的手性分离条件,测定了不同合成条件下得到的手性四面体金属簇合物C0M0(CO)5C5H4C(O)CH3(μη^2-HC≡CCH2OH)的对映体过剩值(ee)。结果表明,高效液相色谱手性固定相法是拆分这类化合物的一种理想方法。  相似文献   

12.
在自制的直链淀粉-三(苯基氨基甲酸酯)(ATPC)高效液相色谱手性固定相(HPLC—CSP)上,优化了手性四面体金属簇合物的手性分离条件,测定了不同合成条件下得到的手性四面体金属族合物CoMo(C0)5C5H4C(O)CH3(μη^2-HC≡CCH2OH)的对映体过量值(e.e)。结果表明:高效液相色谱手性固定相法是拆分这类化合物的一种理想方法。  相似文献   

13.
Designer benzodiazepines represent an emerging class of new psychoactive substances. While other classes of new psychoactive substances such as cannabinoid receptor agonists and designer stimulants are mainly consumed for hedonistic reasons, designer benzodiazepines may also be consumed as ‘self‐medication’ by persons suffering from anxiety or other psychiatric disorders or as stand‐by ‘antidote’ by users of stimulant and hallucinogenic drugs. In the present study, five benzodiazepines (adinazolam, cloniprazepam, fonazepam, 3‐hydroxyphenazepam and nitrazolam) and one thienodiazepine (metizolam) offered as ‘research chemicals’ on the Internet were characterized and their main in vitro phase I metabolites tentatively identified after incubation with pooled human liver microsomes. For all compounds, the structural formula declared by the vendor was confirmed by nuclear magnetic resonance spectroscopy, gas chromatography–mass spectrometry (MS), liquid chromatography MS/MS and liquid chromatography quadrupole time‐of‐flight MS analysis. The detected in vitro phase I metabolites of adinazolam were N‐desmethyladinazolam and N‐didesmethyladinazolam. Metizolam showed a similar metabolism to other thienodiazepines comprising monohydroxylations and dihydroxylation. Cloniprazepam was metabolized to numerous metabolites with the main metabolic steps being N‐dealkylation, hydroxylation and reduction of the nitro function. It has to be noted that clonazepam is a metabolite of cloniprazepam, which may lead to difficulties when interpreting analytical findings. Nitrazolam and fonazepam both underwent monohydroxylation and reduction of the nitro function. In the case of 3‐OH‐phenazepam, no in vitro phase I metabolites were detected. Formation of licensed benzodiazepines (clonazepam after uptake of cloniprazepam) and the sale of metabolites of prescribed benzodiazepines (fonazepam, identical to norflunitrazepam, and 3‐hydroxyphenazepam) present the risk of incorrect interpretation of analytical findings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Synthetic cathinones are phenylalkylamine compounds related to natural cathinone from Catha edulis leaves. Due to their sympathomimetic effects comparable to common illicit drugs, these substances are mainly drugs of abuse and constitute the second most frequently seized group of new psychoactive substances. In order to ensure their regulation and to promote public health, reliable analytical tools are required to track these substances. In the present study, we developed a CE hyphenated to laser-induced fluorescence detection method to demonstrate its suitability to perform fast and cost-effective synthetic cathinones analysis. Fourteen compounds including isobaric compounds and position isomers were selected to encompass the large panel of chemical structures. To separate the FITC-labeled analytes (presenting the same negative charge and close mass to charge ratios), MEKC separation mode was selected. Method selectivity was not suitable using common surfactants. In this context, alkyl polyethylene glycol ether surfactants were successfully used as neutral surfactant to overcome this analytical challenge. The effect of surfactant nature on separation performances and migration behaviors of the analytes was also studied. Optimal BGE composition included 75 mM borate buffer at pH 9.3 and 0.4 mM of C12E10 surfactant. Final MEKC separation conditions were proposed to analyze a large panel of synthetic cathinones. This method helped to reach a sensitivity with LOD from 0.1 to 0.4 nM (pg/mL order).  相似文献   

15.
通过对14种卡西酮类新精神活性物质标准品的差分拉曼光谱分析研究,建立了一种简便快速、准确可靠、无损检材的卡西酮类新精神活性物质的分析方法。设置差分拉曼光谱仪激光光源785nm,激光功率200mW,积分时间1s,扫描范围为2400~200 cm-1,对14种常见卡西酮类标准品样品进行了检验分析。可以通过对差分拉曼光谱的分析区分所有14种卡西酮类物质。利用该方法可以对卡西酮类物质进行快速无损的检验,该方法可以用于公安机关实际办案。  相似文献   

16.
《Analytical letters》2012,45(7):1439-1449
Abstract

In this work, the (R)‐N,N,N‐trimethyl‐2‐aminobutanol‐bis(trifluoromethanesulfon)imidate chiral ionic liquid was first used in chromatography and exhibited a excellent chiral recognition ability in high performance capillary electrophoresis (HPCE), high performance liquid chromatography (HPLC), and capillary gas chromatography (CGC), which also showed for the first time that chrial ionic liquid was an effective chiral selector in HPCE and HPLC. The compounds that have been separated using this chiral ionic liquid at least included alcohol, amine, acid, and amino acid, et al. enantiomers. As the chiral ionic liquid can be easily synthesized from relatively inexpensive materials, it should have a great potentiality for chiral separation in chromatographic science.  相似文献   

17.
Three polyacetylenes were isolated and purified from Platycodon grandiflorum A. DC for the first time by high‐speed counter‐current chromatography using a two‐phase solvent system composed of hexane/ethyl acetate/methanol/water (1:31:1:31, v/v/v/v) and high‐performance liquid chromatography with an Agilent ZORBAX® SB‐C18 column (4.6 mm × 150 mm, 5 μm). After separation by high‐speed counter‐current chromatography and high‐performance liquid chromatography, we obtained 3.5 mg of platetyolin A, 4.1 mg of platetyolin B, and 18.1 mg of lobetyolin with purities of 97.2, 96.7, and 96.9%, respectively. The purity of each compound was assessed by high‐performance liquid chromatography and the chemical structures were evaluated by high‐resolution electrospray ionization time‐of‐flight mass spectrometry and one‐ and two‐dimensional NMR spectroscopy. Among the isolated compounds, platetyolin A and platetyolin B are newly reported compounds.  相似文献   

18.
The enantioselective separation of pheniramine was studied by a high‐speed countercurrent chromatography method using β‐cyclodextrin derivatives as a chiral selector. Several key variables, for instance, type of organic solvent and chiral selector, concentration of chiral selector, pH value of aqueous phase, and temperature on the enantioselectivity, were investigated systematically by liquid–liquid extraction experiments. Combining the results of extraction experiments and high‐speed countercurrent chromatography, the most suitable conditions for separation of pheniramine enantiomers were obtained with the two‐phase system that consisted of isobutyl acetate/aqueous phase, containing 0.02 mol/L carboxymethyl‐β‐cyclodextrin, pH 8.50 at 278.15 K. Under the optimal conditions, pheniramine enantiomer was successfully resolved after four cycles of high‐speed countercurrent chromatography. By using high‐performance liquid chromatography to analyze the fractions, the purities of both (+)‐pheniramine and (–)‐pheniramine were over 99% and the recovery of this method was up to 85–90%.  相似文献   

19.
The enantioseparation of eight psychoactive drugs has been firstly performed on a coated cellulose-based chiral stationary phase (Chiralcel OJ-H). To obtain optimum separation conditions, the influences of alcohol modifiers and basic/acidic additives have been studied. As a result, except for the partial separation of oxybutynin enantiomers, the other seven drug enantiomers, including mirtazapine, sulpiride, promethazine, citalopram, oxazepam, donepezil, and cyamemazine, have been completely separated. Additionally, for gaining a better insight into the chiral recognition mechanisms, molecular docking was carried out using the Autodock software. Herein, binding energy and conformations of the chiral stationary phase complexes were provided, and it was found that the distinction in enantiomeric conformation determined the number and strength of intermolecular interactions between analytes and chiral stationary phase which resulted in the difference in binding energies of two enantiomers, and ultimately led to the different migration. These modeling results were in accordance with the observed enantioseparation results in high performance liquid chromatography experiments. At last, chiral separation mechanisms have been discussed in detail, and it has been confirmed that hydrogen bond, π–π, hydrophobic interactions, and some special interactions synergistically contributed to the enantioseparation of psychoactive drugs.  相似文献   

20.
Metal–organic frameworks are promising porous materials. Chiral metal–organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal–organic framework [Co2(D‐cam)2(TMDPy)] (D‐cam = d ‐camphorates, TMDPy = 4,4′‐trimethylenedipyridine) with a non‐interpenetrating primitive cubic net has been used as a chiral stationary phase in high‐performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run‐to‐run and column‐to‐column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co2(D‐cam)2(TMDPy)] may represent a promising chiral stationary phase for use in high‐performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号