首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

2.
Condensation of 4‐aminoantipyrine with ethyl acetoacetate, ethyl benzoylacetate, and ethyl cyanoacetate furnished the corresponding ethyl 3‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)aminoacrylate and 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide derivatives. The aminoacrylates derivatives react with acetonitrile and sodium hydride to give 2‐amino‐6‐methyl‐1‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)‐4‐pyridone. Reaction of the cyanoacetamide derivative with dimethylformamide‐dimethylacetal (DMF‐DMA) afforded 2‐cyano‐N‐[1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐pyrazol‐4‐yl]‐2‐(N,N‐dimethylamino)methylene acetamide in high yield. Treatment of the latter with 5‐aminopyrazole derivatives afforded the corresponding pyrazolo[2,3‐a]pyrimidines. 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide also reacts with heterocyclic diazonium salts to give the corresponding pyrazolo[5,1‐c]‐1,2,4‐triazine derivatives. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:508–514, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20046  相似文献   

3.
This study is in continuation of our work related to 5‐pyrazolones aimed at synthesizing new heterocycles with dyeing and anticipated biological properties. Compounds 1 and 2 ; 1‐methyl‐ or 1‐(2,4‐dimethylphenyl)‐3‐phenyl‐1H‐pyrazol‐5(4H)‐one, 3 ; 1‐methyl‐5‐oxo‐3‐phenyl‐4,5‐dihydro‐1H‐pyrazole‐4‐carbaldehyde and 4 ; 2‐(1‐methyl‐5‐oxo‐3‐phenyl‐1H‐pyrazol‐4(5H)‐ylidene)‐3‐phenylthiazolidin‐5‐one were prepared and subjected to diazotation with aromatic amines and diamines. New azo ( 1a – c , 2a, b , 3a , b , 4a , c ) and bisazo dyes ( 2c , d , 4b ) were obtained, and their structures were confirmed by spectroscopic and analytical methods. In addition, UV–vis measurements, dyeing performance, and fastness tests were carried out for all compounds.  相似文献   

4.
New synthetic routes for triazolopyridine, pyridopyrimidine, pyridotriazine, imidazopyridine and pyri‐dazine derivatives incorporating a coumarin moiety with interesting biological activities are reported. Reactions of the 2‐oxo‐4‐(2‐dimethylaminoethenyl)‐2H‐chromene‐3‐carbonitrile ( 4 ) and 2‐amino‐4‐(2‐dimethylaminoethenyl)quinoline‐3‐carbonitrile ( 5 ) with benzotriazol‐1‐yl‐acetic acid hydrazide ( 6 ) affords the substituted [1,2,4]triazolo[1,5‐a]pyrido[3,4‐c]coumarines 9 and quinoline 12 , respectively. Treatment of 4 with 2‐amino‐pyridine, glycine, urea, 3‐aminocrotononitrile or cyanothioacetamide affords 14–18 , respectively. Treatment of 3‐amino‐3,4‐dihydro‐4‐imino‐chromeno[3,4‐c]pyridin‐5‐one (10) with α‐chloro‐acetylacetone affords pyridotriazine derivative 21 . Compound 4 was also coupled with benzenediazonium chloride to afford 2‐oxo‐4‐[2‐oxo‐1‐(phenyl‐hydrazono)‐ethyl]‐2H‐chromene‐3‐carbonitrile 25 . Treatment of the latter product with malononitrile afforded the 1‐phenyl‐3‐(3′‐Cyano‐2′‐oxo‐coumarin‐4′‐yl)‐6‐oxo‐pyridazine‐5‐carbonitrile ( 27 ). The structures of the newly synthesized compounds have been established on the basis of analytical and spectral data.  相似文献   

5.
Four new Schiff bases were designed and synthesized. 5‐Methyl‐4‐(4‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 1 ) and 5‐methyl‐4‐(2‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 2 ) were synthesized by interaction of 1‐phenyl‐3‐methyl‐4‐benzoyl‐2‐pyrazolin‐5‐one (PMBP) with o‐ and p‐phenylenediamine, respectively; 4,4′‐(1,2‐phenylenebis(azanediyl)bis(phenylmethanylylidene))bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one) (compound 3 ) and 5‐methyl‐4‐(phenyl(2‐((3‐phenylallylidene)amino)phenylamino)methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 4 ) were synthesized by interaction of compound 2 with PMBP and cinnamaldehyde in an ethanolic medium, respectively. The molecular structures of the title compounds were first characterized by single‐crystal X‐ray diffraction, mass spectrometry, and elemental analysis. The title compounds were tested for antibacterial activity (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by disk diffusion method.  相似文献   

6.
The starting (1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbonohydrazonoyl dicyanide ( 2 ) was used as key intermediate for the synthesis of 3‐amino‐2‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylazo)‐[3‐substituted]‐1‐yl‐acrylonitrile derivatives ( 3 – 10 ). In addition, nitrile derivative 2 reacted with hydrazine hydrate or malononitrile to afford the corresponding 3,5‐diaminopyrazole 11 and enaminonitrile derivative 13 , respectively. On the other hand, compound 3 was subjected to react with malononitrile, acetic anhydride, triethylorthoformate, N,N‐dimethylformamide (DMF)‐dimethylacetal, thiourea, and hydroxylamine hydrchloride to afford antipyrine derivatives 16 – 21 . Moreover, the reaction of enaminonitrile 3 with carbon disulfide in pyridine afforded the pyrimidine derivative 22 , whereas, in NaOH/DMF followed by the addition of dimethyl sulphate afforded methyl carbonodithioate 24 . The reaction of enaminonitrile derivatives 3 – 5 with phenylisothiocyanate afforded the thiopyrimidine derivatives 25a – c . Finally, the enaminonitrile 4 reacted with 3‐(4‐chloro‐phenyl)‐1‐phenyl‐propenone to afford the pyridine derivative 27 . The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 13C‐NMR, 1H–NMR, and MS).  相似文献   

7.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

8.
Eleven novel 5‐methyl‐2‐[(un)substituted phenyl]‐4‐{4,5‐dihydro‐3‐[(un)substituted phenyl]‐5‐(1,2,3,4‐tetrahydroisoquinoline‐2‐yl)pyrazol‐1‐yl}‐oxazole derivatives were synthesized and characterized by elemental analysis, ESI‐MS, 1H NMR and 13C NMR. All of the compounds have been screened for their antiproliferative activities against PC‐3 cell (human prostate cancer) and A431 cell (human epidermoid carcinoma cancer) lines in vitro. The results revealed that compounds 4g , 4j and 4k exhibited the strong inhibitory activities against the PC‐3 cell lines (with IC50 values of 2.8±0.11, 3.1±0.10 and 3.0±0.06 μg/mL, respectively).  相似文献   

9.
The fluoroquinolone family member ciprofloxacin is well known for its drug design and coordinating ability towards metal ions. The coordination chemistry of this drug with metal ions of biological and pharmaceutical importance is of considerable interest. Novel Mn(III) mixed‐ligand complexes of ciprofloxacin with various bis‐pyrazolone‐based dinegative bidentate ligands were synthesized and characterized on the basis of their physical properties, magnetic susceptibility measurements, (FT‐IR and electronic) spectral studies. The FAB‐mass spectrum of [Mn(A9)(L)(H2O)2]·H2O [where H2A9 = 4,4′‐(p‐tolylmethylene)bis(3‐methyl‐1‐phenyl‐4,5‐dihydro‐1H‐pyrazol‐5‐ol) and HL = 1‐cyclopropyl‐6‐fluoro‐4‐oxo‐7‐(piperazin‐1‐yl)‐1,4‐dihydroquinoline‐3‐carboxylic acid] was determined. All the synthesized compounds were screened for their bioactivity. The mixed‐ligand complexes exhibited comparable activities against two Gram‐negative (Escherichia coli and Serratia marcescens) and two Gram‐positive (Staphylococcus aureus and Bacillus subtilis) microorganisms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and convenient one‐pot synthesis of 4‐(4‐chlorophenylazo)‐5‐methyl‐2‐aryl‐1,2‐dihydro‐pyrazol‐3‐ones (4a–j) has been carried out from 3‐arylsydnones (3a–j) by reaction with 2‐(4‐chlorophenyl)‐hydrazono‐3‐oxo‐butyric acid ethyl ester (2b). The 3‐arylsydnones are used as masked hydrazines in this reaction. Similarly, the 4‐arylazo‐2‐(7‐hydroxy‐4‐methyl‐2‐oxo‐2H‐chromen‐8‐ylmethyl)‐5‐methyl‐1,2‐dihydro‐pyrazol‐3‐ones (7a–j) were synthesized from 3‐[(7‐acetoxy‐4‐methyl‐8‐methylene)coumaryl]sydnone (5). All the newly synthesized compounds exhibited antimicrobial activity greater than the reference drugs used.  相似文献   

11.
A novel series of tetrahydroquinolines containing acetohydrazide, oxopyrazole, oxothioxodihydropyrazole, and thioxotriazole have been synthesized. Antileishmanial, antitumor, and cytotoxicity activities of synthesized compounds were evaluated in vitro. Antileishmanial activity of the most synthesized compounds showed tremendous activity towards Leishmania major. Most of the test compounds exhibited significant level of tumor inhibition. The tetrahydropyrano[2,3‐b]quinolin‐2‐one 6 and 4‐oxo‐4H‐pyrazol‐3‐yloxytetrahydroquinoline‐3‐carbonitrile derivatives 18 showed 100% tumor inhibition comparable with standard drug vincristine (100% tumor inhibition). Tetrahydroquinolines under investigation showed cytotoxicity with LD50 values in the range 0.56–3.01 μg/mL compared with standard drug MS‐222 with LD50 value of 4.30 μg/mL. The presence of a pyrazole ring markedly improved the activity profiles of tetrahydroquinoline. All newly synthesized compounds were characterized by IR, 1H NMR, and MS.  相似文献   

12.
4‐(4‐Chlorobenzylidene)‐2,5‐diphenyl‐2,3‐dihydro‐3H‐pyrazol‐3‐one 3a and 4‐(3,4‐dimethoxybenzylidene)‐5‐phenyl‐2,3‐dihydro‐3H‐pyrazol‐3‐one 3b were prepared and were reacted with phenylhydrazine, thiosemicarbazide, hydroxylamine hydrochloride, ethyl acetoacetate, diethylmalonate, malononitrile, ethyl cyanoacetate, and thiourea yielding fused pyrazole derivatives. Some of the new compounds were reacted with cyclic and acyclic sugars to produce new S‐, O‐, and N‐glycoside derivatives. The antitumor activity against the human breast cancer cells (MCF‐7) was assessed. Four of the new compounds showed IC50 values less than those of the positive control, indicating that these four compounds are better anticancer agents than doxorubicin.  相似文献   

13.
In an attempt to achieve promising cytotoxic agents, a series of new (Z)‐3‐benzyl‐5‐((1‐phenyl‐3‐(3‐((1‐substituted phenyl‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)‐1H‐pyrazol‐4‐yl)methylene)thiazolidine‐2,4‐diones 10 a‐n were designed, synthesized, and characterized by 1H NMR, 13C NMR, IR, and ESI‐MS techniques. These compounds synthesized from appropriate reaction procedures with better yields. All the novel synthesized compounds 10a‐n were evaluated for their cytotoxic activity against the MCF‐7 cell line (Human breast cancer cell line) at different concentrations of 0.625, 1.25, 2.5, 5, and 10 μM, respectively. The cytotoxic evaluation assay is presented in terms of IC50 values and percentage cell viability reduction compared against standard drug cisplatin. Among all novel synthesized compounds 10a‐n , some of the representative analogues particularly 10g and 10e exhibit remarkable cytotoxic activity with IC50 values 0.454 and 0.586 μM, comparable to that of the standard drug cisplatin, and some analogues 10d , 10f , 10k, and 10m also have shown significant activity.  相似文献   

14.
4‐Hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐carboxaldehydes 2a‐d are prepared from 4‐hydroxy‐2‐oxo‐2H‐1‐benzopyrans 1a‐d via the Vielsmeyer Haack reaction. The 4‐hydroxy‐2‐oxo‐3‐(3′oxo‐3′‐phenylprop‐1′‐enyl)‐2H‐1‐benzopyrans 3a‐d are obtained from 2a‐d via the Claisen reaction. Refluxing compounds 3a‐d with hydrazine hydrate gave the 3‐phenyl‐5‐(4‐hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐yl)‐1,4,5‐trihydropyra‐zols 4a‐d . Stirring compounds 2a‐d with semicarbazide hydrochloride in acidic medium gave the 4‐hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐aldehyde‐semicarbazone 5a‐d , which on cyclisation with ferric chloride hexahydrate gave the 5‐(4‐hydroxy‐2‐oxo‐2H‐1‐benzopyran‐3‐yl)‐2,4‐dihydro[1,2,4]triazol‐3‐ones 6a‐d . All these compounds show significant antibacterial activities.  相似文献   

15.
5‐Methyl‐2,4‐dihydro‐3H‐pyrazol‐3‐one and/or 5‐methyl‐2‐phenyl‐2,4‐dihydro‐3H‐pyrazol‐3‐one was reacted with arylidenemalononitrile in the presence of sodium alkoxide to give 2‐amino‐6‐alkoxy‐4‐arylpyridine‐3,5‐dicarbonitrile 4a–e instead of the reported pyrazolo[3,4‐b]pyridine‐5‐carbonitriles. The same products 4a–e were prepared via reaction of arylidenemalononitrile with sodium alkoxide in an appropriative alcohol. However, the new synthetic route for preparation of their positional isomer 4‐amino‐6‐alkoxy‐2‐arylpyridine‐3,5‐dicarbonitrile 7a–j has been achieved via reaction of 2‐aminoprop‐1‐ene‐1,1,3‐tricarbonitrile with different aromatic aldehydes under the same conditions.  相似文献   

16.
(1,5‐Dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbono‐hydrazonoyl dicyanide was used as a key intermediate for the synthesis of novel pyrazole, isoxazole, pyrimidine, and pyridazine derivatives. The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 1H‐NMR, 13C‐NMR, and mass spectra). The compounds were tested for their in vitro antibacterial activity against Gram‐positive bacteria as (Staphylococcus aureus and Bacillus subtilis ) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ). The investigated compounds were tested against two strains of fungi Botrytis fabae and Fusarium oxysporum using diffusion agar technique. The biological results showed clearly that most of the synthesized compounds revealed mild to moderate activity against the used microorganisms.  相似文献   

17.
In the present study the International Conference on Harmonization‐prescribed stress degradation was carried out to study the degradation profile of edaravone. To establish a Quality by Design (QbD)‐assisted stability‐indicating assay, the reaction solutions in which different degradation products were formed were mixed. Plackett Burman and central composite design were used to screen and optimize experimental variables to resolve edaravone and its impurities with good peak symmetry using an RP C18 column. The method was validated according to International Conference on Harmonization guidelines. Seven unknown and two known degradation products were identified and characterized by LC‐MS/MS. Two major degradation products formed under thermal degradation were isolated and characterized as 4‐(4,5‐dihydro‐3‐methyl‐5‐oxo‐1‐phenyl‐1H‐pyrazol‐4‐yl‐4‐(4,5‐dihydro‐5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one and 3‐hydroxy‐dihydro‐thiazolo[1‐(2‐methyl‐buta‐1,3dienyl)‐1‐phenylhydrazine]5‐one. The degradation pathways of degradants were proposed based on m/z values.  相似文献   

18.
A series of functionalized H‐[1]benzopyrano[2,3‐b]pyridine derivatives were synthesized by the Friedländer reaction of 2‐amino‐4‐oxo‐4H‐chromene‐3‐carbonitriles 1 with malononitrile, ethyl cyanoacetate, or acetophenone (Scheme). The synthesized compounds 2 – 4 were screened for their in vitro activity against antitubercular, antibacterial, and antifungal species (Fig., Table). Among the synthesized compounds, 3c and 4f were the most active with 99% inhibition against Mycobacterium tuberculosis H37Rv, while compounds 2f, 3f , and 4d exhibited 69%, 63%, and 61% inhibition, respectively. The 4‐amino‐7,9‐dibromo‐1,5‐dihydro‐2,5‐dioxo‐2H‐chromeno[2,3‐b]pyridine‐3‐carbonitrile ( 3b ) showed the most potent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. Several chromeno[2,3‐b]pyridine derivatives showed equal or more potency against Staphylococcus aureus and Candida albicans.  相似文献   

19.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

20.
A useful synthesis of 3‐methylthio‐6‐methyl‐pyrano[4,3‐c]pyrazol‐4(2H)‐ones via 3‐(bis‐methylthio)methylene‐5,6‐dihydro‐6‐alkyl(aryl)‐2H‐pyran‐2,4‐dione with hydrazine as well as methyl and phenyl hydrazines is described and the mechanism of the formation is discussed. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:342–344, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10158  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号