首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Convenient syntheses of 3‐substituted ethyl 4‐oxo‐2‐thioxo‐1,2,3,4,5,6,7,8‐octahydropyrid[4′,3′:4,5]thieno[2,3‐d]pyrimidine‐7‐carboxylates 3a, b, 6, 11–13 , ethyl 3‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5 H‐pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8‐7H‐carboxylate ( 4 ), and ethyl 2‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5H‐pyrido[4′,3′:4,5]thieno[2, 3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8[7H]carboxylate ( 8 ) from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahythieno[2,3‐c]pyridine‐3,6‐dicarboxylate ( 1 ) are reported. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:201–207, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10131  相似文献   

2.
Diethyl 2‐[(ethoxythioxomethyl)amino]‐4,5,6,7‐tetrahydrothieno[2,3‐c]‐pyridine‐3,6‐dicarboxylate 2 , prepared from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahydrothieno[2,3‐c]pyridine‐3,6‐dicarboxylate 1 by boiling in anhydrous ethanol, was converted into pyrido[4′,3′:4,5]thieno[2,3‐d]pyrimidine derivatives 3, 4 by treatment with hydrazine hydrate. The tetracyclic systems imidazo[1,2‐a]pyrido‐[4′,3′:4,5]thieno[2,3‐d]pyrimidine 9 and pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo‐[3,2‐a]pyrimidine 10 were synthesized by the reaction of 2 with 1,2‐diaminoethane and aminoethanethiol, respectively. The hydrazino derivative 4 underwent cyclization reactions with orthoesters and nitrous acid to give the corresponding pyrido[4′,3′:4,5]thieno[2,3‐d][1,2,4]triazolo[1,5‐a]pyrimidines 5, 6 and pyrido[4′,3′:4,5]thieno[3,2‐e][1,2,3,4]tetrazolo[1,5‐a]pyrimidine 8 , respectively. Moreover, reactions of 3 with cyanogen bromide, N‐carbethoxyhydrazine, carbon disulfide, and ethylchloroformate resulted in the formation of the new pyrido[4′,3′:4,5]thieno[2,3‐d][1,3,4]thiadiazolo[3,2‐a]pyrimidine derivatives 12–15 . © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:280–286, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10030  相似文献   

3.
A new class of substituted 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile derivatives catalyzed by Imidazole under mild reaction conditions has been developed. A variety of functionalized 2‐amino‐4‐(2‐ethoxybenzo[d][1,3]dioxol‐5‐yl)‐4H‐pyran‐3‐carbonitrile scaffolds were assembled in high yields by this catalytic protocol. The newly synthesized compounds have been characterized by IR, 1H NMR, 13C NMR, and mass spectral data. The compounds were then evaluated for antimicrobial activities.  相似文献   

4.
The 1,3‐dipolar cycloaddition of an azomethine ylide generated by a decarboxylative route from sarcosine and isatin to 7‐arylmethylidene‐3‐aryl‐3,4‐dihydro‐2H‐thiazolo[3,2‐a][1,3,5]triazin‐6(7H)‐ones afforded novel dispiro[oxindole‐pyrrolidine]‐thiazolo[3,2‐a][1,3,5]triazines in moderate yields. The structures of the products were determined and characterized thoroughly by NMR, MS, IR, and elemental analysis. The results of experiment indicated that this 1,3‐dipolar cycloaddition proceeded with high stereoselectivity and regioselectivity. J. Heterocyclic Chem., (2011).  相似文献   

5.
A novel series of (9Z)‐9‐arylmethylidene‐3‐(2,6‐dichlorophenyl)‐5,6‐dihydro[1,3]thiazolo[2′,3′:2,3]imidazo [1,2‐d][1,2,4]oxadiazol‐8(9H)‐one derivatives were prepared in moderate yields by the 1,3‐dipolar cycloaddition reaction of a nitrile oxide with (2Z)‐2‐arylmethylidene‐5,6‐dihydroimidazo [2,1‐b][1,3]thiazol‐3(2H)‐ones. The reaction site of the dipolarphile is the C═N of imidazo[2,1‐b][1,3]thiazole rather than the expected C═C of the arylmethylidene. The product structures were characterized thoroughly by IR, MS, NMR spectroscopy, and elemental analysis. The results indicate that this reaction proceeds with chemoselectivity and regioselectivity.  相似文献   

6.
The pseudo‐Michael reaction of 2‐hydrazinylidene‐1‐arylimidazolidines with diethyl ethoxymethylenemalonate (DEEM) was investigated. The reaction yields the chain adduct, namely diethyl{[2‐(1‐arylimidazolidin‐2‐ylidene)hydrazinyl]methylidene}propanedioates. This is contrary to the pseudo‐Michael reaction of DEEM with 1‐aryl‐4,5‐dihydro‐1H‐imidazol‐2‐amines that does not allow isolation of chain derivatives and leads to cyclic imidazo[1,2‐a]pyrimidine derivatives while even at thermodynamic control. At first cyclization of diethyl{[2‐(1‐arylimidazolidin‐2‐ylidene)hydrazinyl]methylidene}propanedioates leads to ethyl 1‐aryl‐5(1H,8H)oxo‐2,3‐dihydro‐imidazo[2,1‐c][1,2,4]triazepine‐6‐carboxylates. 1,5‐Sigmatropic shift, following the cyclization, caused isomerization of 5(1H,8H)oxo‐2,3‐dihydro‐imidazo[2,1‐c][1,2,4]triazepine‐6‐carboxylates to ethyl 1‐aryl‐5(1H)hydroxy‐2,3‐dihydroimidazo[2,1‐c][1,2,4]triazepine‐6‐carboxylates. Presence of both isomers in the reaction product was detected in the NMR spectra. The structure of all the compounds was confirmed with spectroscopic studies (1H NMR and MS). The structure of diethyl{[2‐(1‐phenylimidazolidin‐2‐ylidene)hydrazinyl]methylidene}propanedioate was also confirmed by X‐ray crystallography. In the addition reaction, thermodynamics and HOMO–LUMO orbitals of the reactants were studied by using quantum chemical calculations.  相似文献   

7.
An efficient one‐pot method for synthesis of new biologically active thiazolo[3,2‐a ]pyrimidine and thiazolo[2,3‐b ]quinazoline derivatives is described via reaction of pentachloropyridine with fused pyrimidine‐2(5H )‐thiones or quinazoline‐2(1H )‐thiones. These reactions were carried out in the presence of potassium carbonate as a base in acetonitrile as a solvent to produce products 3a – n in good‐to‐excellent yield. Pentachloropyridine is doubly electrophilic building blocks for the formation of ring annulated thiazolo[3,2‐a ]pyrimidine and thiazolo[2,3‐b ]quinazoline products.  相似文献   

8.
The reaction involving 4‐phenyl‐octahydro‐pyrano[2,3‐d]pyrimidine‐2‐thione, ethyl chloroacetate and the appropriate aromatic aldehyde yielded 2‐arylmethylidene‐5‐phenyl‐5a,7,8,9a‐tetrahydro‐5H,6H‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidin‐3(2H)‐ones. The 1,3‐dipolar cycloaddition of 2‐arylmethylidene‐5‐phenyl‐5a,7,8,9a‐tetrahydro‐5H,6H‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidin‐3(2H)‐ones with azomethine ylide generated by a decarboxylative route from sarcosine and acenaphthenequinone afforded 4′‐aryl‐1′‐methyl‐5″‐phenyl‐5a″,7″,8″,9a″‐tetrahydro‐2H,5″H,6″H‐dispiro[acenaphthylene‐1,2′‐pyrrolidine‐3′,2″‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine]‐2,3″‐diones in moderate yields. The structures of the products were determined and characterized thoroughly by NMR, MS, IR, elemental analysis, and X‐ray crystallographic analysis.  相似文献   

9.
N‐benzimidazol‐2‐yl imidate type 1 reacts with thiourea, carbon disulfide, cyanamide, and hydrazide to give, respectively, [1,2‐a] benzimidazolo‐1,3,5‐triazin‐2‐thione 2 , [1,2‐a] benzimidazolo‐1,3,5‐thiadiazin‐2‐thione 3 , [1,2‐a] benzimidazolo‐1,3,5‐triazin‐2‐amine 4 , and [1,2‐a] benzimidazol‐2‐yl amidrazone 5 with good yields. Structures elucidation of all newly synthesized heterocyclic compounds was based on the data of IR, 1H NMR, 13C NMR, elemental analysis, and MS of some products. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:279–283, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20618  相似文献   

10.
The interaction of 3-allylsulfanyl-5H-[1,2,4]triazino[5,6-b]indole with iodine led to 1-iodomethyl-1,2-dihydro[1,3]thiazolo[2',3':3,4][1,2,4]triazino[5,6-b]indol-11-ium pentaiodide with an angular structure, on the basis of which 1-iodomethyl-1,2-dihydro[1,3]thiazolo-, 1-methylidene-1,2-di-hydro[1,3]thiazolo, and 1-methyl[1,3]thiazolo derivatives were obtained. The intramolecular cyclization of 3-propargyl(allyl)sulfanyl-5H-[1,2,4]triazino[5,6-b]indoles under the influence of concentrated sulfuric acid led to linear annelated products:3-methyl[1,3]thiazolo[3',2':2,3][1,2,4]tri-azino[5,6-b]indole or its 2,3-dihydro derivative.  相似文献   

11.
A novel, facile, one‐pot, multicomponent reaction for the synthesis of a series of pyrano[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidine and pyrano[2′,3′:4,5]pyrimido[2,1‐b][1,3,5]thiadiazine derivatives has been developed from reaction of 2,4‐dichlorobezaldehyde, malononitrile, and the appropriate active methylene compounds in refluxing dioxane in the presence of chitosan. A plausible mechanism has been proposed for this reaction, and the structure of the newly synthesized compounds was all established on the basis of spectral data (mass, IR, and 1H‐NMR) and elemental analyses.  相似文献   

12.
Diaminomethylenehydrazones of cyclic ketones 1–5 reacted with ethyl N‐cyanoimidate (I) at room temperature or with bis(methylthio)methylenecyanamide (II) under brief heating to give directly the corresponding spiro[cycloalkane[1′,2′,4′]triazolo[1′,5′,‐a][1′,3′‐5′]triazine] derivatives 7–12 in moderate to high yields. Ring‐opening reaction of the spiro[cycloalkanetriazolotriazine] derivatives occurred at the cycloalkane moiety upon heating in solution to give 2‐alkyl‐5‐amino[1,2,4]triazolotriazines 13–16. Diaminomethylenehydrazones 17–19, of hindered acyclic ketones, gave 2‐methyl‐7‐methylthio[1,2,4]‐triazolo[1,5‐a][1,3,5]triazines 21–23 by the reaction with II as the main products with apparent loss of 2‐methylpropane from the potential precursor, 2‐tert‐butyl‐2‐methyl‐7‐methylthio[1,2,4]triazolo[1,5‐a]‐[1,3,5]triazines 20, in good yields. In general, bis(methylthio)methylenecyanamide II was found to be a favorable reagent to the one‐step synthesis of the spiro[cycloalkanetriazolotriazine] derivatives from the diaminomethylenehydrazones. The spectral data and structural assignments of the fused triazine products are discussed.  相似文献   

13.
The cyclization of the derivatives of 3‐aminotriazole, 2‐(5‐substituted 4H‐1,2,4‐triazol‐3‐ylamino)‐1‐arylethanones and 2‐(4H‐1,2,4‐triazol‐3‐ylthio)‐1‐arylethanones to yield 6‐aryl‐4H‐imidazo[1,2‐b][1,2,4]triazoles and 6‐aryl‐thiazolo[3,2‐b][1,2,4]triazoles has been described.  相似文献   

14.
The synthesis of ethyl 6‐aryl‐4‐oxo‐4,6‐dihdro‐1(12)(13)H‐pyrimido[2′,1′:4,5][1,3,5]triazino[1,2‐a]‐benzimidazole‐3‐carboxylates ( 4a‐p ) was described via pyrimidine ring annulation to 4‐aryl‐3,4‐dihydro[1,3,5]triazino[1,2‐a]benzimidazole‐2‐amines ( 2a‐p ) which were obtained from 2‐guanidinobenzimidazole ( 1 ). Tautomerism in the prepared compounds was investigated using nmr spectroscopy. Compounds 2a‐p were found to be present in dimethyl sulfoxide solution predominantly as 3,4‐dihyhydro tautomeric form. Compounds 4a‐p existed in dynamic equilibrium of 1‐, 12‐ and 13H‐forms. It was found that methylation of 4a‐d led to 13‐methyl substituted derivatives 9a‐d exclusively.  相似文献   

15.
The reaction of 4‐oxo‐3,4‐dihydroquinazolinyl‐2‐guanidine 1 with several active methylene compounds has revealed formation of the corresponding hydropyrimidine and dihydropyrimidnone (DHPMs) derivatives via cycloaddition reaction mechanism. Satisfactory results were obtained with good yields, short time, and simplicity in the experimental procedure. Reaction with ketones in DMF proceeded via (5+1) heterocyclization and resulted in the formation of 2‐amino‐4‐(het)aryl‐4,6‐dihydro‐1(3)(11)H‐[1,3,5]triazino[2,1‐b]quinazolin‐6‐ones 8 , 9 , 10 , 11 , 12 , 13 , respectively. All compounds have been characterized based on IR, 1H‐NMR, and mass spectrum.  相似文献   

16.
Thiazolopyrimidine derivatives are well known because of their excellent therapeutic properties. In this investigation, an effective one‐pot three‐component method is described for the synthesis of novel 2‐[(Z )‐1‐(substituted phenyl)methylidine]‐7‐methyl‐3‐oxo‐5‐(substituted phenyl)‐2,3‐dihydro‐5H ‐thiazolo[3,2‐a]pyrimidine‐6‐carboxilic acid tert ‐butyl ester derivatives by condensation reaction of 3,4‐dihydropyrimidine‐2(1H )‐thiones, various aromatic aldehydes and chloroacetyl chloride under reflux conditions in the presence of Fe3O4@l ‐arginine nanoparticles as a magnetically reusable and eco‐friendly catalyst with short reaction times and moderate yields. The chemical structures of all synthesized compounds were determined using infrared, 1H NMR and 13C NMR spectroscopies. In vitro antimicrobial activities of 3,4‐dihydropyrimidine‐2(1H )‐thiones and newly fused thiazolo[3,2‐a]pyrimidine derivatives were examined using the well diffusion method against diverse pathogenic strains, namely Staphylococcus aureus ATCC 6538, S. epidermidis ATCC 12228, Escherichia coli ATCC 8739 and Pseudomonas aeruginosa ATCC 9027 (bacteria), Candida albicans ATCC 10231 (yeast) and Aspergillus niger ATCC 16404 (fungus). The compounds having 2‐hydroxy, 4‐hydroxy, 2‐chloro and 4‐chloro groups attached to the phenyl ring on the pyrimidine and 4‐CH3, 4‐OCH3 and 3‐NO2 groups attached to benzylidine on the thiazolo moiety showed significant antibacterial activity.  相似文献   

17.
The reaction of thionyl chloride with the semicarbazone 2 gave 4,5‐dihydro‐6,9‐dihydroxynaphtho‐[1,2‐d][1,2,3]thiadiazole ( 3 ) instead of 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]thiadiazole ( 4 ). Selenium dioxide oxidation of compound 2 gave 4,5‐dihydro‐6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 5 ). Oxidation of compound 5 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone afforded 6,9‐dimethyoxynaphtho[1,2‐d][1,2,3]selenadiazole ( 6 ).  相似文献   

18.
With a continuing interest in heteropolycyclic systems which may show biological activities, we studied the reaction of 3‐amino‐2‐(methylamino)pyridine with diethyl 1,3‐acetonedicarboxylate in order to develop pyridodiazepinone derivatives. From the reaction mixture, we separated dipyrido[1,2‐a:2′,3′‐d]imidazole derivatives ( 3 and 4 ) besides two isomeric pyrido[2,3‐b][1,4]diazepine derivatives ( 5 and 6 ) in which the complex structural differentiation was achieved through nmr experiments and chemical evidence. Several attempts to elaborate isomers 5 and 6 have not yet given significant results.  相似文献   

19.
A 2‐(2‐Mercapto‐4‐(4‐phenoxyphenyl)‐6‐(thiophen‐2‐yl)‐1,6‐dihydropyrimidin‐5‐yl) acetic acid was used as a reactive key precursor to design various pyrimidine derivatives such as thiazolo[3,2‐a]pyrimidines and pyrimido[2,1‐b][1,3]thiazines. The chemical structures of the newly synthesized products were confirmed by their elemental analyses and spectral data (IR, 1H NMR, 13C NMR, and mass spectra). The antibacterial and antifungal activities of some of the synthesized products were also evaluated, and it was found that compounds 3, 5, 9 , and 11 exhibited potent activity against tested microorganisms in comparison with standard drugs.  相似文献   

20.
Condensation of 2‐amino‐5‐phenyl‐5H‐thiazolo[4,3‐b] [1,3,4] thiadiazoles ( 1 ) with some carboxylic acid derivatives furnished corresponding compounds 2–4 , respectively. Alkylation of 1 with benzoylchloride and 4‐chlorobenzyl chloride afforded thiazolo[4,3‐b][1,3,4]thiadiazole derivatives 5 and 6 , respectively. Similarly, transformation of 1 with chloroacetyl chloride yielded chloroacetamide derivative 7 . The later compound was subjected to react with potassium thiocyanate or piperazine whereby, the binary thiazolidinone derivative 8 and N 1 ,N4‐disubstituted piperazine 9 were produced, respectively. Also, the reactivity of 1 toward various active methylene reagents was investigated. Accordingly, our attempts to synthesize the tricyclic heterocyclic system 10 , 11′ , 12 by reaction of 1 with chloroacetonitrile, 4‐oxo‐4‐phenylbutanoic acid and/or diethylmalonate in presence of acetyl chloride was furnished 10 , 11 , and 12 . The newly synthesized compounds were screened as antimicrobial agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号