首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(10):1667-1678
Abstract

A new spectrophotoraetric method has been developed for the analysis of pheniramine maleate and chlorphenlramine maleste, based on their reaction with iron (III). Pheniramine maleate and ch lor pheniramine maleate were found to form a 2:1 complex with iron (III) with an average log. stability constant of 12.26 and 12.36, respectively. The iron (III) complexes of both drugs showed maximum absorption at 273 nm, at pH 5, with slopes equal to 0.710 and 0.898 for pheniramine maleate complex and chlorpheniramine maleate complex, respectively. The proposed method was used for the determination of pheniramine maleate and chlorpheniramine maleate in quantities ranging between 0.25 × 10?4 M to 2.5 × 10?4 M with mean percentage recoveries of 100.17 ± 1.09% and 100.00 ± 1.13% for both drugs, respectively. The results obtained were compared with that of the B.P. (1980) method.  相似文献   

2.
We present results from a comparative study of three proposed phosphorimetric methods for determination of naphazoline (NPZ) in solution. The first method is based on use of micelles to stabilize phosphorescence signals in solutions at room temperature (MS-RTP). The second is based on the use of a heavy atom salt and sodium sulfite as an oxygen scavenger to obtain room-temperature phosphorescence (HAI-RTP) in solution. The last method employs an optical sensor for NPZ based on the phosphorescent properties of the analyte on a solid sensor phase. The aim of this work was to compare time consumption, simplicity, sensitivity, selectivity, detection, and quantification limits for use of these three phosphorimetric methods to determine naphazoline in pharmaceutical preparations. The most simple, sensitive, and reproducible of the three methods for naphazoline analysis is the HAI-RTP method. Detection limits are 4.9, 1.7, and 9.4 ng mL–1, respectively, for the MS-RTP, HAI-RTP, and optosensor methods.  相似文献   

3.
When the concentration of dodecyl benzene sulfonic acid sodium salt (SDBS) is 0.7 mmol·L?1, the electrochemical and electrochemiluminescence (ECL) intensity of Ru(bpy)32+‐chlorpheniramine maleate (CPM) system at the Au electrode were studied. The results showed that compared with the absence of SDBS, enhancement of the ECL intensity was 14‐fold at Au electrode. Base on this, an ECL method was established for efficient and simple determination of CPM at Au electrode. Under the optimum experimental condition, the enhanced ECL intensities had good linear relationship with the concentration of CPM in the range of 1.0×10?4–1.0×10?7 mol·L?1, and a linear regression equation was obtained as follows: I (counts)=48.805×106c+394.03 (r=0.9975), the detection limit for CPM was 1.4×10?8 mol·L?1. The RSD for 5 times determinations of 1.0×10?5 mol·L?1 CPM was 3.2%. The results of recovery test were between 96.3%–102.5%, and the RSD of recovery test (n=5) was 2.7%. In addition, eleven kinds of tertiary amines‐Ru(bpy)32+ systems were investigated in the absence and presence of SDBS. The results showed that the enhancement of SDBS on ECL intensity of tertiary amines‐Ru(bpy)32+ systems was universal.  相似文献   

4.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

5.
The present work reports a simple and quick strategy for simultaneous determination of paracetamol (PC) and ascorbic acid (AA) in pharmaceutical formulations using flow injection method with multiple pulse amperometric detection. The method allows the resolution of the mixture without chemical pretreatment of the sample or electrode modification or the use of chemometric techniques for data analysis. The compounds are detected by applying four sequential pulses (waveform) in function of time to a three‐electrode amperometric system that uses a wall‐jet cell with gold as working electrode. AA is direct detected at +0.40 V and PC is indirectly detected at 0.0 V by the reduction (desorption) of the oxidation product (N‐acetyl‐p‐benzoquinoneimine) electrochemically generated at +0.65 V. The fourth potential pulse (?0.05 V) is applied for the complete regeneration (cleaning) of the gold electrode surface. The linear response range was optimized between 5 and 24 mg L?1 for AA and 50 and 240 mg L?1 for PC. The difference between the two responses ranges (10‐fold) present correlation with the concentration of these compounds in two different pharmaceutical formulations available in the Brazilian market. The analytical frequency was calculated in 60 injections per hour. The use of the proposed methodology for PC quantification in the presence of higher AA concentrations was also carried out. Using the standard addition method, it was possible to detect PC in trace levels (LD=0.2 mg L?1) in the presence of 880‐fold more of AA (176 mg L?1).  相似文献   

6.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

7.
《Electroanalysis》2005,17(8):685-693
Carbon paste electrodes were modified by mixing appropriate amounts of the monomers o‐phenylendiamine, p‐phenylendiamine and m‐phenylendiamine (o‐PD, p‐PD and m‐PD) into a graphite powder‐paraffin oil matrix. The electropolymerization of the incorporated phenylendiamine was then carried out in a carbon paste electrode in acidic medium by cyclic voltammetry between ?0.30 V and +0.90 or under constant potential. The modified carbon paste electrodes (MCPEs) obtained by this electropolymerization method were found to be useful for trace determination of Pb2+ in aqueous solutions. Lead(II) was first preconcentrated on the modified electrodes by complexation with the modifier, and the electrode was then transferred to an electrochemical cell. The best results in terms of sensitivity and detection limit were obtained with poly p‐phenylenediamine (poly (p‐PD)). For a 10‐min preconcentration time, the calibration plot was linear from 5×10?8 mol L?1 to 10?5 mol L?1, with r2=0.999 and relative standard deviation equal to 5%. However, the lowest lead concentration that could be detected was 10?9 mol L?1. Interference from metal ions like Cd(II), Hg(II), Zn(II), Fe(II) and Cu(II) was also studied.  相似文献   

8.
A capillary zone electrophoresis procedure has been developed for the chiral determination of pheniramine in eye drop. Native and derivative cyclodextrins (CDs) including γ-CD, β-CD, hydroxypropyl-β-CD and dimethyl-β-CD were tested as chiral selectors. Using 30 mM hydroxypropyl-β-CD in 50 mM phosphate buffer (pH 3.0), the acceptable resolution value (R = 1.55) was obtained. The assay was validated for linearity (3.3 × 10−6–5.0 × 10−4 M; R 2 = 0.9996), limit of detection (3.3 × 10−6 M), limit of quantification (8.5 × 10−6 M), analytical precision by terms of intra- and inter-day variability (RSD ≤ 2.57%), and accuracy (recovery ≥ 89.3%). The content of pheniramine in eye drop obtained by the proposed method was in good agreement with the declared value. The results indicated that pheniramine in the eye drop was present as the racemate.  相似文献   

9.
《Electroanalysis》2017,29(11):2572-2578
We report in this work, a new method for the determination of captopril by differential pulse voltammetry using a glassy carbon electrode modified with a copper metal‐organic framework (H‐Kust‐1 or Cu3(BTC)2 or Cu‐BTC), immobilized on the surface by a copolymer of acrylamide and sodium acrylate. This compound is detected by the formation of a copper(II)‐captopril complex that is observed in an oxidation potential at ca. +0.28 V vs . Ag/AgCl. A linear dynamic range is obtained for a captopril concentration of 0.5 μM to 7.0 μM and the voltammetric response is highly reproducible within 3.52 % error. The sensitivity of 9.71±0.37 nA μM−1 and the limit of detection of 0.20±0.01 μM make this methodology highly applicable for practical applications. The determination of captopril in a commercial pharmaceutical sample showed a recovery of 93.3 %.  相似文献   

10.
The redox mediator Meldola blue (MB) was entrapped into two polymers, poly‐1,2‐diaminobenzene (p‐DAB) and poly‐3,4‐ethylenedioxythiophene (p‐EDOT) by potential cycling and films were applied to NADH oxidation with subsequent glutamate detection using immobilized glutamate dehydrogenase. Both polymer films were tested for electrocatalysis of NADH using amperometry at Eapp=0.1 V vs. Ag/AgCl and similar response characteristics were obtained with sensitivity values of 6.1 nA μM?1, linear range up to 0.5 mM (R2=0.9972) and LOD of 50 μM. Subsequent amperometric determination of glutamate resulted in sensitivity 0.7 nA μM?1, linearity 0–100 μM and detection limit of 2 μM glutamate.  相似文献   

11.
A simple flow injection amperometric system for fast and indirect quantification of dopamine (DA) in the presence of a large excess of ascorbic acid (AA) is reported. The method consists of the application of three sequential potential pulses to an unmodified glassy carbon‐working electrode positioned in a wall‐jet cell. DA is indirectly detected at +0.35 V through the reduction of the oxidation product (o‐dopaminoquinone) electrochemically generated at +0.80 V. The third potential pulse (0.00 V) is applied for the regeneration (cleaning) of the unmodified working electrode. The limits of detection (LOD) and quantification (LOQ) were calculated as 50 and 170 nmol L?1, respectively. Considering the LOQ value, the present methodology allows DA quantification in the presence up to 5000‐fold more of AA (1.0 mmol L?1).  相似文献   

12.
This work describes the sequential determination of amlodipine (AML) and atenolol (ATN) by batch injection analysis (BIA) with pulsed amperometric detection (BIA‐PAD). Boron doped diamond (BDD) was used as working electrode. AML was detected at +1.00 V and ATN at +1.65 V. The proposed BIA method is simple, robust, precise (RSD <3.2 %; n=10), presents high analytical frequency (>70 injections h?1), generates reduced volume of waste (without use of organic solvent) and requires minimal sample manipulation (dissolution and dilution in electrolyte). The limits of detection were 0.074 and 0.073 µmol L?1 for AML and ATN, respectively. The results obtained with the proposed BIA method were compared to those obtained by HPLC and similar results were obtained (at 95% of confidence level).  相似文献   

13.
《Electroanalysis》2018,30(8):1870-1879
A portable electroanalytical system applied for rapid and simultaneous determination of uric acid (UA) and nitrite (NIT) in human biological fluids (urine, saliva and blood) is reported. The system is based on batch‐injection analysis with multiple‐pulse amperometric (BIA‐MPA) detection using screen‐printed electrodes (SPEs) modified with multi‐walled carbon nanotubes. Sample dilution in optimized electrolyte (0.1 mol L−1 Britton‐Robinson buffer pH 2) followed by injection of 100 μL on the electrode surface using an electronic micropipette is performed. UA is detected at +0.45 V and both UA+NIT at +0.70 V. Linear calibration plots for UA and NIT were obtained over the range of 1–500 μmol L−1 with detection limits of 0.05 and 0.06 μmol L−1, respectively. For comparison, a differential‐pulse voltammetric (DPV) method was optimized, and linear calibration plots for UA and NIT were obtained over range of 1–30 μmol L−1 and 1–40 μmol L−1 with detection limits of 0.1 and 0.3 μmol L−1, respectively. BIA‐MPA is highly precise (RSD<1.3 %), fast (160 h−1) and free from sample‐matrix interferences as recovery values ranged from 77 to 121 % for spiked samples (short contact time of sample aliquot with SPE). Contrarily, recovery tests conducted using DPV did not provide adequate recovery values (>150 %), probably due to the longer contact time of the SPE with the biological samples during analysis leading to a severe interference of sample matrices.  相似文献   

14.
A spectroelectrochemical sensor that combines three modes of selectivity in a single device was evaluated in natural and treated water samples using tris‐(2,2′‐bipyridyl) ruthenium(II) dichloride hexahydrate, [Ru(bpy)3]2+, as a model analyte. The sensor was an optically transparent indium tin oxide (ITO) electrode coated with a thin film of partially sulfonated polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (SSEBS). As the potential of the ITO electrode was cycled from +0.7 to +1.3 V, the analyte changed from the colored [Ru(bpy)3]2+ complex to colorless [Ru(bpy)3]3+ complex and the change in absorbance at 450 nm was used as the optical signal for quantification. Calibration curves were obtained for [Ru(bpy)3]2+ in natural well water, river water and treated tap water with detection limits of 108, 139 and 264 nM, respectively. A standard addition method was developed to determine an ‘unknown’ spike addition concentration of [Ru(bpy)3]2+ in well water. The spectroelectrochemical sensor determined the concentration of [Ru(bpy)3]2+ spiked into a sample of Hanford well water to be 0.39±0.03 µM versus the actual concentration of 0.40 µM.  相似文献   

15.
Kinetic-catalytic spectrophotometric methods were proposed for the determination of trace amounts of vanadium element as vanadium(Ⅳ) and/or V(Ⅴ) ions. The vanadium(Ⅳ) as VO^2+ ion and/or vanadium(Ⅴ) as VO3^- ion showed a catalytic effect on the kinetic reactions between a color reagent such as methylthymol blue (MTB) or SPADNS and bromate in acidic media. The rate of decrease in the absorbance of the reagent MTB at 440 nm or SPADNS at 510 nm was proportional to concentration of V(Ⅳ) and/or V(Ⅴ) ions in the solution. The linear ranges for determination of vanadium were obtained in the range of 1.0-150 and 5.0-100.0 μg/L by the fixed-time and slope methods, respectively, with using MTB as reagent. In the presence of SPADNS as reagent, the calibration curves were made in the amplitude 1.0-200.0 and 5.0-150 μg/L of vanadium ion by the fixed-time and slope methods, respectively. Using fixed-time method, the limits of detection were obtained to be 0.5 and 0.7 μg/L of vanadium in the presence of MTB and SPADNS as reagents, respectively. Detection limits of vanadium by slope method and reagents of SPADNS and MTB were obtained to be 3.5 and 3.8 μg/L of vanadium, respectively. The proposed methods were applied successfully to determination of vanadium in synthetic and real samples.  相似文献   

16.
We report a simple, sensitive, and rapid detection of captopril using copper(II) and a bare glassy carbon electrode with cyclic voltammetry. The captopril is detected by the formation of a copper(II)‐captopril complex that is observed to have a characteristic oxidation potential at+0.24 V vs. Ag/AgCl. It is found that the peak current varies linearly with the concentration of captopril. The linear dynamic range is obtained for a captopril concentration of 1 µM to 10 µM, and the sensitivity is found to be 0.10±0.003 μA μM?1. Importantly, the low limit of detection (n=3) of 0.10 μM and the precision of 3.2 %, are achieved using a simple, unmodified electrode. This is attributable to in situ adsorption of a copper(II)‐captopril complex on the electrode surface.  相似文献   

17.
A new simple, rapid and sensitive liquid chromatographic method has been developed and validated for the simultaneous determination of pseudoephdrine, pheniramine, guaifenisin, pyrilamine, chlorpheniramine and dextromethorphan in cough and cold pharmaceuticals. The separation of these compounds was achieved within 13 min on a Kromasil C18 column using an isocratic mobile phase consisting of methanol-dihydrogenphosphate buffer at pH 3 (45:55, v/v). The analysis was performed at a flow rate of 1 mL min−1 and at a detection wavelength of 220 nm. The selectivity, linearity of calibration, accuracy, within and between-days precision and recovery were examined as parts of the method validation. The concentration-response relationship was linear over a concentration range of 5-50 μg mL−1 for pseudoephdrine, pheniramine, chlorpheniramine and 50-600 μg mL−1 for guaifenisin, pyrilamine, dextromethorphan, methylparaben and sodium benzoate with correlation coefficients better than 0.998. The standard deviations of the intraday and interday were all less than 2%. The proposed liquid chromatographic method was successfully applied for the routine analysis of these compounds in different cough and cold pharmaceutical preparations such as syrups, capsules, tablets and sachets. The presence of preservatives (sodium benzoate and methylparaben) and other excipients did not show any significant interference on the determination of these compounds.  相似文献   

18.
The lipophillic ammonium salt of 1‐pyrrolidine dicarbodithioic acid (PCDT) (I) was introduced as a new selective ionophore for an iron selective electrode. In addition, the effect of immobilization of 18‐crown‐6 (18CE6) (membrane type‐II), on the electrode performance was discussed. The slope of the PCDT‐based (I) electrode was (20 mV/decade). The linear concentration range was (10?5–10?1 M) after one day doping. The detection limit for electrode type‐(II) was (1.3×10?6 M). For membrane with only 18CE6 (type‐III) the linear range and the detection limit were improved (10?5–10?1 M and 3.2×10?6 M, respectively). The pH‐range was between 5–11 for type‐II, and III electrodes, while it was 7–11 for type‐I electrode. Most of the common cations were tested for the evaluation of the electrode selectivity with correlation to the ionic radii of the tested cations. Among them only Ag+ and Pb2+ were the real interference for type‐III electrode. Application of using the electrode for the determination of iron in lubrication oil samples was performed with RSD (1.77–2.7%) and (1.01–2.3%) for type‐II and III electrodes, respectively. The corresponding recovery ranges were (93.0–99.9%) and (96.3–100%). The obtained results were compared to those of an atomic absorption spectrophotometric method.  相似文献   

19.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A flow injection system with amperometric detection at potentials poised at +0.4 and +0.9 V was used to evaluate intensity of the bitter taste in monovarietal Extra Virgin Olive Oils (EVOO). Results from the proposed method were based on the extraction of the bitter constituents of the virgin olive oil samples in methanol‐water, followed by the direct amperometric measurement. These potentials were selected according to the hydrodynamic voltammogram of oleuropein, one of the most prominent and bitter phenolic compound found in EVOO. The amperometric detection was applied on 32 monovariatal EVOO samples. Results were correlated with the phenolic profile measured by high performance liquid chromatography (HPLC). The amperometric signal at +0.9 V mainly correlated with the total phenols of the samples (R2=0.81), whereas the signal at +0.4 V mainly correlated with oleuropein aglycone (3,4 DHPEA‐EDA, R2=0.79). Bitterness intensity of the samples was evaluated by a trained sensory panel of experts and the results compared to those obtained by the amperometric flow system. The best correlation with the bitter taste was achieved by the sensor at +0.4 V (R2=0.72). A calibration model based on partial least squares was built with three variables, namely the sensors set at +0.4 and +0.9 V and the total phenol content of the EVOO extracts. The model showed a moderate capacity to predict the bitterness of the EVOO samples using leave one out method, (R2=0.75) and in prediction of a test set of samples (R2=0.7). Such approach is very promising for future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号