首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the strategies of receptor structure‐guided benzoxazinone design, a series of nitrogen nucleophiles such as benzyl amine, sodium azide, 4,4‐bis o‐toluidine, 4‐butanolamine, glucosamine, 2‐amino pyridine, 2‐picolinyl amine, hydroxyl amine, and hydrazine derivatives, for example, hydrazine hydrate, semicarbazide, thiosemicarbazide, methylhydrazide, phenylhydrazide, could be reacted with 2‐benzoxazine‐2‐yl benzoic acid 1 . According the basicity of nucleophiles, regiospecific isomerization of benzoxazinone has been considered through formation of the spiro derivatives. Organic reagents can be controlled on the course of reaction of benzoxazinonyl benzoic acid 1 . Preliminary bioassays indicated that the insecticidal spectra of the synthesized compounds were ecofriendly biodegradable materials due to isomerization. Among these analogues, the quinazoline 2 – 4 showed 100% mortality against Nilaparvata lugens (LC50 = 0.087 mg/L). The insecticidal potency of our designed analogues was dual‐controlled by isomerization to quinazolinone and spiro derivatives that observed in vitro and shed light on the novel insecticidal mechanism. The chemical structure of the products can be confirmed by microanalytical, spectral data, optimized and stimulated by quantum chemical parameters.  相似文献   

2.
Behaviour of 2‐(4‐oxo‐4H‐benzo[d][l,3]oxazin‐2‐yl)‐benzoic acid (1) towards nitrogen nucleophiles namely, hydrazine hydrate, in different solvents, ammonium acetate, and o‐phenylenediamine has been investigated to give aminoquinazolin‐4‐one, benzotriazepinone, spiro‐type compound, and nitrogen bridgehead compounds 3‐5 , respectively. Also, reactivity of the aminoquinazolin‐4‐one 2 towards carbon elec‐trophiles such as ethyl acetoacetate, ethyl phenylacetate, ethyl chloroacetate, and aromatic aldehydes has been discussed. Reaction of Schiff s base 8 with sulfur nucleophiles namely o‐aminothiophenol and/or thio‐glycolic acid afforded Michael type adducts. Structural assignments, of products 1‐24 have been confirmed by elemental analysis and spectral data (1H‐ and 13C ‐NMR and MS fragmentation). The bioassay indicates that some of the target compounds obtained have good selective anticancer activity.  相似文献   

3.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

4.
Oxidation of some derivatives of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐one have been investigated in detail using lead(IV) acetate in acetic acid under reflux conditions and periodic acid in aqueous ethanol at room temperature. We realized that during the first 5–15 minutes of the oxidation reactions in lead(IV) acetate/acetic acid system, 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives have been synthesized chemo selectively, while, if the reaction mixtures stirred for additional 3 hours, the main products would be 2‐(2‐(Methoxycarbonyl)‐3‐oxo‐2,3‐dihydrobenzofuran‐2‐yl)benzoic acids. Moreover, room temperature oxidation of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐ones by periodic acid (H5IO6), leads to the formation of 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives in good to excellent yields.  相似文献   

5.
Previously unknown 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazoline]‐2,2′‐(7′H)‐diones and their N‐substituted analogues were obtained via reaction of 6‐R1‐3‐(2‐aminophenyl)‐1,2,4‐triazin‐5‐ones with isatin and its substituted derivatives. It was shown that alkylation of 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′‐(7′H)‐diones by N‐R3‐chloroacetamides or chloroacetonitrile in the presence of а base proceeds by N‐1 atom of isatin fragment. The spectral properties (1H and 13C NMR spectra) of synthesized compounds were studied, and features of spectral patterns were discussed. The high‐effective anticonvulsant and radical scavenging agents among 3′‐R1‐5‐R2‐spiro[indoline‐3,6′‐[1,2,4]triazino[2,3‐c]quinazolin]‐2,2′(7′H)‐diones and their N‐substituted derivatives were detected. It was shown that compounds 2.2 , 2.8 , and 3.1 exceed or compete the activity of the most widely used in modern neurology drug—lamotrigine on the pentylenetetrazole‐induced seizures model. The aforementioned fact may be considered as a reason for further profound study of synthesized compounds using other pathology models.  相似文献   

6.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij ]quinoline‐1,2‐dione ( 3 ) with two equivalents of cyclic 1,3‐dicarbonyl compounds under acid catalysis generates spiro[4H‐pyran‐3,3′‐oxindoles] 7 . In contrast, though base catalysis also achieves double addition, the final products 8 result from subsequent ring opening of the five‐membered lactam via intramolecular attack by enolate; these products can be converted into the spiro[4H‐pyran‐3,3′‐oxindoles] by treatment with acid.  相似文献   

7.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

8.
The reaction between homophthalic anhydride and cyclohexanone was examined both in the presence of DMAP or BF3·Et2O complex as a catalyst. The latter yielded (±)‐1‐oxo‐1H‐spiro[benzo[c]pyran‐3(4H), 1′‐cyclohexane]‐4‐carboxylic acid ( 3 ) in a higher yield (82 %). A series of new (±)‐4‐(N,N‐disubstituted‐1‐carbamoyl)‐1H‐spiro[benzo[c]pyran‐3(4H),1′‐cyclohexane]‐1‐ones ( 5a‐h ) were synthesized from the parent acid 3 by a two‐step reaction. Differentiating microbial screening was performed for most of the synthesized compounds against twelve microorganisms belonging to different taxonomic groups. The spiro acid 3 was active against all bacterial strains with MIC ≥ 20 μg/ml against B. subtillis and P. vulgaris. E. coli was the most sensitive strain to the antibacterial effect of the tested compounds.  相似文献   

9.
The title compounds were synthesized via condensing acetonylphthalimide and 4‐acetonyloxyphthalazine‐1‐one with dimethylformamide dimethylacetal (DMFDMA). The reaction of these enaminones with electrophiles and nucleophiles is reported as a route to polyfunctional heteroaromatics.  相似文献   

10.
A one‐step synthesis of ethyl 2,3‐dihydronaphtho[1,2‐b]furan‐2‐carboxylate and/or ethyl 4′‐oxospiro[cyclopropane‐1,1′(4′H)‐naphthalene]‐2′‐carboxylate derivatives 2 and 3 , respectively, from substituted naphthalen‐1‐ols and ethyl 2,3‐dibromopropanoate is described (Scheme 1). Compounds 2 were easily aromatized (Scheme 2). In the same way, 3,4‐dibromobutan‐2‐one afforded the corresponding 1‐(2,3‐dihydronaphtho[1,2‐b]furan‐2‐yl)ethanone and/or spiro derivatives 8 and 9 , respectively (Scheme 6). A mechanism for the formation of the dihydronaphtho[1,2‐b]furan ring and of the spiro compounds 3 is proposed (Schemes 3 and 4). The structures of spiro compounds 3a and 3f were established by X‐ray structural analysis. The reactivity of compound 3a was also briefly examined (Scheme 9).  相似文献   

11.
Novel spiro heterocycles, substituted spiro‐pyrimidine, pyrazole and isoxazole compounds are prepared by the cyclocondensation of 4‐oxocyclohexane gem‐dicarboxylates and cyano esters with nucleophiles.  相似文献   

12.
The present article reports our approach toward the synthesis of spiro compounds via indol‐2,3‐diones. Thus, reaction of indol‐2,3‐dione derivatives with a secondary cyclic amino acid, namely, (R)‐(−)‐thiazolidine‐4‐carboxylic acid, affords a thiazolo‐oxazolidinone as the main product. When the reaction is carried out in the presence of a dipolarophile, 1,3‐dipolar cycloaddition to the intermediate azomethine ylide leads to a novel spiro compound. The products have been characterized on the basis of spectral studies, and the geometry of the intermediate iminium compound has been optimized by use of the semiempirical molecular orbital method. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 381–384, 1999  相似文献   

13.
Diaminomethylenehydrazones of cyclic ketones 1–5 reacted with ethyl N‐cyanoimidate (I) at room temperature or with bis(methylthio)methylenecyanamide (II) under brief heating to give directly the corresponding spiro[cycloalkane[1′,2′,4′]triazolo[1′,5′,‐a][1′,3′‐5′]triazine] derivatives 7–12 in moderate to high yields. Ring‐opening reaction of the spiro[cycloalkanetriazolotriazine] derivatives occurred at the cycloalkane moiety upon heating in solution to give 2‐alkyl‐5‐amino[1,2,4]triazolotriazines 13–16. Diaminomethylenehydrazones 17–19, of hindered acyclic ketones, gave 2‐methyl‐7‐methylthio[1,2,4]‐triazolo[1,5‐a][1,3,5]triazines 21–23 by the reaction with II as the main products with apparent loss of 2‐methylpropane from the potential precursor, 2‐tert‐butyl‐2‐methyl‐7‐methylthio[1,2,4]triazolo[1,5‐a]‐[1,3,5]triazines 20, in good yields. In general, bis(methylthio)methylenecyanamide II was found to be a favorable reagent to the one‐step synthesis of the spiro[cycloalkanetriazolotriazine] derivatives from the diaminomethylenehydrazones. The spectral data and structural assignments of the fused triazine products are discussed.  相似文献   

14.
Starting from 1‐[(tert‐butoxy)carbonyl]piperidine‐4‐carboxylic acid and 2‐bromoaniline, the spiro[indole‐3,4′‐piperidin]‐2‐one system was obtained in three high‐yielding steps: anilide formation, N(1)‐protection, and intramolecular cyclization under Pd catalysis as the key reaction. The preparation of the corresponding 2‐bromoanilide was studied. In extension, the same sequence was developed with 4‐methyl‐ and 4‐nitro‐2‐bromoaniline. In the key step, the NO2 group led to a rather diminished yield. The transformation of the protected spiro[indole‐3,4′‐piperidin]‐2‐one to the corresponding unprotected dihydroindoles is discussed.  相似文献   

15.
A one‐pot, four‐component reaction for the efficient synthesis of novel spiro[indeno[2,1‐b]quinoxaline‐11,4′‐pyran]‐2′‐amines by using InCl3 is described. The syntheses are achieved by reacting ninhydrin with 1,2‐diaminobenzenes to give indenoquinoxalines, which are trapped in situ by alkyl malonates and various α‐methylencarbonyl compounds through cyclization, providing multifunctionalized spiro‐substituted indeno[2,1‐b]quinoxaline‐11,4′‐pyran‐2′‐amines.  相似文献   

16.
Some new derivatives of spiro[3H‐indole‐3,2′‐thiazolidine]‐2,4′(1H)‐dione with the heterocyclic ring such as substituted thiazole and 1,2,4‐oxadiazole attached to the indolinone ring via CH2 linkage has been synthesized in moderate yields. The synthesis have been carried out by making use of the reactivity of the NH group of the indolinone moiety present in spiro[3H‐indole‐3,2′‐thiazolidine]‐2,4′(1H)‐dione.  相似文献   

17.
An efficient four‐component approach for the synthesis poly‐substituted pyrano[3,2‐c]pyridones and spiro[indoline‐3,4′‐pyrano[3,2‐c]pyridine]‐2,5′(6′H)‐diones in water has been established. During the reaction, the products were readily achieved through one‐pot two‐step reaction using solid acid as catalyst. The advantages of atom and step economy, the recyclability of heterogeneous solid acid catalyst, easy workup procedure, and the wide scope of substrates make the reaction a powerful tool for assembling pyrano[3,2‐c]pyridone skeletons of chemical and medical interest.  相似文献   

18.
N‐Acridin‐9‐yl methyl N′‐acridin‐9‐yl thiourea spontaneously spiro cyclises via nucleophilic attack of the methylene carbon onto the C‐9 of the other acridine moiety. The thiourea, upon reaction with bromoacetonitrile, provided a spiro fused‐bicyclic product displaying unusual dynamic behavior.  相似文献   

19.
Reaction of (4E)‐4‐arylmethylene‐3,4‐dihydro‐1‐benzothiepin‐5(2H)‐ones 3a‐e with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 4a, b ) in refluxing benzene, afforded 2′,4′,5′‐triaryl‐2,2′,3,4′‐tetrahydro‐spiro[1‐benzothiepine‐4(5H),3′(3H)‐pyrazol]‐5‐ones 5a‐i and not the isomeric forms spiro[1‐benzothiepine‐4(5H),4′(4H)‐pyrazol]‐5‐ones 6 in high regioselective manner. Single crystal X‐ray diffraction studies of 5a, f, g indicated that the isolated products are 3′R, 4′ S.  相似文献   

20.
The 2H‐1‐benzo/naphthopyran‐2‐one‐4‐yl (un)substituted phenyl‐1,3,4‐oxadiazoles has been synthesized by the oxidative cyclization of benzoic acid hydrazides formed in situ by the condensation of the respective 2H‐1‐benzo/naphthopyran‐2‐one‐4‐carboxaldehyde and (un)substituted monobenzoyl hydrazide in moderate yields. Also, spiro[indoline‐thiozolidine]‐2,4′‐diones has been syhthesized in a similar way from 3‐phenyl‐spiro[3H‐indoline‐3,2′‐thiozolidine]‐2,4′‐(1 H)dione monohydrazide and (un)substituted benzaldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号