首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The intrinsic features of (hetero‐arene)–metal interactions have been elusive mainly because the systematic structure analysis of non‐anchored hetero‐arene–metal complexes has been hampered by their labile nature. We report successful isolation and systematic structure analysis of a series of non‐anchored indole–palladium(II) complexes. It was revealed that there is a σ–π continuum for the indole–metal interaction, while it has been thought that the dominant coordination mode of indole to a metal center is the Wheland‐intermediate‐type σ‐mode in light of the seemingly strong electron‐donating ability of indole. Several factors which affect the σ‐ or π‐character of indole–metal interactions are discussed.  相似文献   

5.
The role of CH–π and CF–π interactions in determining the structure of N‐heterocyclic carbene (NHC) palladium complexes were studied using 1H NMR spectroscopy, X‐ray crystallography, and DFT calculations. The CH–π interactions led to the formation of the cisanti isomers in 1‐aryl‐3‐isopropylimidazol‐2‐ylidene‐based [(NHC)2PdX2] complexes, while CF–π interactions led to the exclusive formation of the cis‐syn isomer of diiodobis(3‐isopropyl‐1‐pentafluorophenylimidazol‐2‐ylidene) palladium(II).  相似文献   

6.
7.
N‐Nitramino/N‐oxyl functionalization strategies were employed to investigate structure–property relationships of energetic materials. Based on single‐crystal diffraction data, π–π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4‐amino‐3,5‐dinitro‐1H‐pyrazol‐1‐olate and dipotassium N,N′‐(3,5‐dinitro‐1H‐pyrazol‐1,4‐diyl)dinitramidate, with unique face‐to‐face π–π stacking, can be potentially used as a high‐performance explosive and an energetic oxidizer, respectively.  相似文献   

8.
The single crystal X‐ray analysis data of the new hepta‐coordinate cadmium(II) complex of N,N‐dimethyl‐N‐(4‐pyridyl)amine (DMPA), [Cd(DMPA)3(NO2)2]·0.5H2O, shows that the coordination environment around the CdII is pentagonal bipyramidal. Furthermore, self‐assembly of this complex as molecular squares that interlink via π–π stacking interactions is observed. This network contains voids that are filled by water molecules.  相似文献   

9.
The peptide N‐benzyloxycarbonyl‐L‐valyl‐L‐tyrosine methyl ester or NCbz‐Val‐Tyr‐OMe (where NCbz is N‐benzyloxycarbonyl and OMe indicates the methyl ester), C23H28N2O6, has an extended backbone conformation. The aromatic rings of the Tyr residue and the NCbz group are involved in various attractive intra‐ and intermolecular aromatic π–π interactions which stabilize the conformation and packing in the crystal structure, in addition to N—H...O and O—H...O hydrogen bonds. The aromatic π–π interactions include parallel‐displaced, perpendicular T‐shaped, perpendicular L‐shaped and inclined orientations.  相似文献   

10.
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H…π, or ion–π interactions. The organic salt (TrOH·iBA) formed by a facile proton‐transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7‐oxocyclohepta‐1,3,5‐trien‐1‐olate, C4H12N+·C7H5O2, has been investigated by X‐ray crystallography, with complementary quantum‐chemical and statistical‐database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice‐packing phenomena. The crystal structure deduced from low‐temperature diffraction measurements displays extensive hydrogen‐bonding networks, yet shows little evidence of the aryl forces (viz. π–π, C—H…π, and ion–π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton‐donating and proton‐accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven‐membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen‐bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid‐based complex, combined with unambiguous signatures of enhanced proton‐delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.  相似文献   

11.
12.
The ability of Ex 2 Box4+ as a host, able to trap guests containing both π‐electron rich (polycyclic aromatic hydrocarbons‐PAHs) and π‐electron poor (quinoid‐ and nitro‐PAHs) moieties was investigated to shed light on the main factors that control the host–guest (HG) interaction. The nature of the HG interactions was elucidated by energy decomposition (EDA‐NOCV), noncovalent interaction (NCI), and magnetic response analyses. EDA‐NOCV reveals that dispersion contributions are the most significant to sustain the HG interaction, while electrostatic and orbital contributions are very tiny. In fact, no significant covalent character in the HG interactions was observed. The obtained results point strictly to NCIs, modulated by dispersion contributions. Regardless of whether the guests contain π‐electron‐rich or π‐electron‐poor moieties, and no significant charge‐transfer was observed. All in all, HG interactions between guests 3‐14 and host 2 are predominantly modulated by π‐π stacking.  相似文献   

13.
The synthesis and structural characterization of 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazole [C16H12N2O2, (I)], 2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium chloride monohydrate [C16H13N2O2+·Cl·H2O, (II)] and the hydrobromide salt 5,6‐dimethyl‐2‐(furan‐2‐yl)‐1‐(furan‐2‐ylmethyl)‐1H‐benzimidazol‐3‐ium bromide [C18H17N2O2+·Br, (III)] are described. Benzimidazole (I) displays two sets of aromatic interactions, each of which involves pairs of molecules in a head‐to‐tail arrangement. The first, denoted set (Ia), exhibits both intermolecular C—H...π interactions between the 2‐(furan‐2‐yl) (abbreviated as Fn) and 1‐(furan‐2‐ylmethyl) (abbreviated as MeFn) substituents, and π–π interactions involving the Fn substituents between inversion‐center‐related molecules. The second, denoted set (Ib), involves π–π interactions involving both the benzene ring (Bz) and the imidazole ring (Im) of benzimidazole. Hydrated salt (II) exhibits N—H...OH2...Cl hydrogen bonding that results in chains of molecules parallel to the a axis. There is also a head‐to‐head aromatic stacking of the protonated benzimidazole cations in which the Bz and Im rings of one molecule interact with the Im and Fn rings of adjacent molecules in the chain. Salt (III) displays N—H...Br hydrogen bonding and π–π interactions involving inversion‐center‐related benzimidazole rings in a head‐to‐tail arrangement. In all of the π–π interactions observed, the interacting moieties are shifted with respect to each other along the major molecular axis. Basis set superposition energy‐corrected (counterpoise method) interaction energies were calculated for each interaction [DFT, M06‐2X/6‐31+G(d)] employing atomic coordinates obtained in the crystallographic analyses for heavy atoms and optimized H‐atom coordinates. The calculated interaction energies are −43.0, −39.8, −48.5, and −55.0 kJ mol−1 for (Ia), (Ib), (II), and (III), respectively. For (Ia), the analysis was used to partition the interaction energies into the C—H...π and π–π components, which are 9.4 and 24.1 kJ mol−1, respectively. Energy‐minimized structures were used to determine the optimal interplanar spacing, the slip distance along the major molecular axis, and the slip distance along the minor molecular axis for 2‐(furan‐2‐yl)‐1H‐benzimidazole.  相似文献   

14.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Dioxobis(pyridine‐2‐thiolate‐N, S)molybdenum(VI) (MoO2(Py‐S)2), reacts with of 4‐methylpyridine (4‐MePy) in acetonitrile, by slow diffusion, to afford the title compound. This has been characterized by elemental analysis, IR and 1H NMR spectroscopy. The X‐ray single crystal structure of the complex is described. Structural studies reveal that the molecular structure consists of a β‐Mo8O26 polyanion with eight MoO6 distorted edge‐shared octahedra with short terminal Mo–O bonds (1.692–1.714 Å), bonds of intermediate length (1.887–1.999 Å) and long bonds (2.150–2.473 Å). Two different types of hydrogen bonds have been found: N–H···O (2.800–3.075 Å) and C–H···O (3.095–3.316 Å). The presence of π–π stacking interactions and strong hydrogen bonds are presumably responsible for the special disposition of the pyridinic rings around the polyanion cluster.  相似文献   

16.
A novel ladder‐type donor pyran‐bridged indacenodithiophene (IDTP) is developed by introducing two oxygen atoms into indacenodithiophene unit. IDTP possesses a twisted backbone and leads to facially asymmetric arrangement of side chains, resulting in enhanced local π–π stacking of according polymer poly[(5,5,11,11‐tetrakis(4‐octylphenyl)‐5,11‐dihydrothieno[2′,3′:5,6]pyrano[3,4‐g]thieno[3,2‐c]isochromene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT, which shows extended absorption range. Moreover, oxygen atoms render deeper highest occupied molecular orbital (HOMO) levels of poly[indacenodithiophene‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothiadiazole)] (PIDTP)‐FBT compared with PIDT‐FBT, therefore bringing a higher open‐circuit voltage (V oc).  相似文献   

17.
The interplay between two important non‐covalent interactions involving aromatic rings (namely anion–π and hydrogen bonding) is investigated. Very interesting cooperativity effects are present in complexes where anion–π and hydrogen bonding interactions coexist. These effects are found in systems where the distance between the anion and the hydrogen‐bond donor/acceptor molecule is as long as ~11 Å. These effects are studied theoretically using the energetic and geometric features of the complexes, which were computed using ab initio calculations. We use and discuss several criteria to analyze the mutual influence of the non‐covalent interactions studied herein. In addition we use Bader’s theory of atoms‐in‐molecules to characterize the interactions and to analyze the strengthening or weakening of the interactions depending upon the variation of the charge density at the critical points.  相似文献   

18.
UV‐visible absorption and fluorescence properties of three series of σ–π‐conjugated polymers (copolymers of alternative oligothienylene and oligosilylene units) have been studied in dioxane solution. The energies of the absorption maximum, fluorescence maximum, and the 0–0 transition are found to be linearly dependent on the reciprocal of the number of thiophene rings in the repeating unit of the polymer chain, but almost independent of the silicon atom number. The σ–π‐conjugation in the polymers results in red shift in the absorption and fluorescence maxima, higher fluorescence quantum yields, and longer fluorescence lifetimes of the polymers, with respect to their corresponding analogous α‐oligothiophenes. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1873–1880, 1999  相似文献   

19.
Three compounds with phenyl and pentafluorophenyl rings bridged by (CH2)3 and (CH2)2SiMe2 units were synthesized by hydrosilylation and C−C coupling reactions. Their solid‐state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain‐type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π–π interactions. For the silicon compounds, structures characterized by σ–π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C6H5(CH2)3C6F5, in contrast, is present as a single conformer. The gas‐phase structures served as a reference for the evaluation of a series of (dispersion‐corrected) quantum‐chemical calculations.  相似文献   

20.
Herein, a facile and efficient method was developed for fabrication of solid‐state electrochemiluminescence (ECL) sensor via non‐covalent π‐π stacking and covalent bonding on the graphite electrode (GE) surface. The electrode was firstly modified with 1‐aminopyrene via π‐π stacking between GE surface and the pyrene moiety. Thereafter a stable and efficient solid‐state ECL sensor was fabricated by covalent immobilization of ruthenium(II) onto the GE surface via amidation reaction between the 1‐aminopyrene and bis(2,2′‐bipyridyl)(4‐methyl‐4′‐carboxypropyl‐2,2′‐bipyridyl) ruthenium(II) bishexafluorophosphate. The sensor has been investigated using tripropylamine and tetracycline as representative analytes, and low detection limits of 0.7 nM and 3.5 nM (S/N=3) were reached, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号