首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of conventional surface plasmon resonance (SPR) biosensors can be limited by the diffusion of the target analyte to the sensor surface. This work presents an SPR biosensor that incorporates an active mass‐transport mechanism based on dielectrophoresis and electroosmotic flow to enhance analyte transport to the sensor surface and reduce the time required for detection. Both these phenomena rely on the generation of AC electric fields that can be tailored by shaping the electrodes that also serve as the SPR sensing areas. Numerical simulations of electric field distribution and microparticle trajectories were performed to choose an optimal electrode design. The proposed design improves on previous work combining SPR with DEP by using face‐to‐face electrodes, rather than a planar interdigitated design. Two different top‐bottom electrode designs were experimentally tested to concentrate firstly latex beads and secondly biological cells onto the SPR sensing area. SPR measurements were then performed by varying the target concentrations. The electrohydrodynamic flow enabled efficient concentration of small objects (3 μm beads, yeasts) onto the SPR sensing area, which resulted in an order of magnitude increased SPR response. Negative dielectrophoresis was also used to concentrate HEK293 cells onto the metal electrodes surrounded by insulating areas, where the SPR response was improved by one order of magnitude.  相似文献   

2.
We present a microfluidic platform allowing dielectrophoresis‐assisted formation of cell aggregates of controlled size and composition under flow conditions. When specific experimental conditions are met, negative dielectrophoresis allows efficient concentration of cells towards electric field minima and subsequent aggregation. This bottom‐up assembly strategy offers several advantages with respect to the targeted application: first, dielectrophoresis offers precise control of spatial cell organization, which can be adjusted by optimizing electrode design. Then, it could contribute to accelerate the establishment of cell‐cell interactions by favoring close contact between neighboring cells. The trapping geometry of our chip is composed of eight electrodes arranged in a circle. Several parameters have been tested in simulations to find the best configurations for trapping in flow. Those configurations have been tested experimentally with both polystyrene beads and human embryonic kidney cells. The final design and experimental setup have been optimized to trap cells and release the created aggregates on demand.  相似文献   

3.
We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field‐flow fractionation. The electrode configuration is such that multiple finite‐sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady‐state levitation height.  相似文献   

4.
A hydrogel‐based microchamber with organic electrodes for efficient electrical stimulations of human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) is described. The microchamber is made from molecularly permeable, optically transparent, and electrically conductive polyvinyl alcohol (PVA) hydrogel and highly capacitive carbon electrode modified with poly(3,4‐ethylenedioxythiophene) (PEDOT). Spheroids of hiPSC‐CMs are cultured in microchambers, and electrically stimulated by the electrode for maturation. The large interfacial capacitance of the electrodes enables several days of electrical stimulation without generation of cytotoxic bubbles even when the electrodes are placed near the spheroids. The spheroids can be cultivated in the closed microchambers because of the permeated nutrients through the hydrogel, thus the spheroids are stably addressable and the culture medium around the sealed microchambers can be simply exchanged. Synchronized beating of the spheroids can be optically analyzed in situ, which makes it possible to selectively collect electrically responsive cells for further use. As the hydrogel is electrically conductive, the amount of electrical charge needed for maturing the spheroids can be reduced by configuring electrodes on the top and the bottom of the microchamber. The bioreactor will be useful for efficient production of matured hiPSC‐CMs for regenerative medicine and drug screening.  相似文献   

5.
A microfluidic chip for multistep manipulations of PMMA submicron particles (PMMA‐SMPs) based on dielectrophoresis (DEP) has been developed that includes four main functions of focusing, guiding, trapping, and releasing the SMPs. The structure of the DEP chip consists of a top electrode made of indium tin oxide, a flow chamber formed by optically clear adhesive tape and bottom electrodes with different patterns for different purposes. The bottom electrodes can be divided into three parts: a fish‐bone‐type electrode array that provides the positive DEP force for focusing the suspended nanoparticles (NPs) near the inlet in the flow chamber; the second is for switching and guiding the focused NPs along the electrode surface to the target area, like a flow passing along a virtual channel; and a trapping electrode in the downstream for trapping and releasing the guided NPs. According to the simulation and experimental results, NPs can be aligned along the electrode of the focusing electrode and guided toward the target electrode by means of a positive DEP force between the top and bottom electrodes, with the effects of Brownian motion and Stokes force. In order to demonstrate the sequence of DEP manipulations, a PMMA‐NP suspension is introduced to the DEP chip; the size of the PMMA‐SMPs is about 300 nm. Furthermore, a LabVIEW program developed for sequence control of the AC signals for the multistep manipulations. Consequently, the DEP chip provides an excellent platform technology for the multistep manipulation of SMPs.  相似文献   

6.
Zhou R  Wang P  Chang HC 《Electrophoresis》2006,27(7):1376-1385
The high polarizability and dielectrophoretic mobility of single-walled carbon nanotubes (SWNT) are utilized to capture and detect low numbers of bacteria and submicron particles in milliliter-sized samples. Concentrated SWNT solutions are mixed with the sample and a high-frequency (>100 kHz) alternating current (AC) field is applied by a microelectrode array to enhance bulk absorption of the particles (bacteria and nanoparticle substitutes) by the SWNTs via dipole-dipole interaction. The same AC field then drives the SWNT-bacteria aggregates to the microelectrode array by positive-AC dielectrophoresis (DEP), with enhanced and reversed bacteria DEP mobility due to the attached SWNTs. Since the field frequency exceeds the inverse RC time of the electrode double layer, the AC field penetrates deeply into the bulk and across the electrode gap. Consequently, the SWNTs and absorbed bacteria assemble rapidly (<5 min) into conducting linear aggregates between the electrodes. Measured AC impedance spectra by the same trapping electrodes and fields show a detection threshold of 10(4) bacteria/mL with this pathogen trapping and concentration technique.  相似文献   

7.
Various recent computational studies initiated this systematic re‐investigation of substituent effects on aromatic edge‐to‐face interactions. Five series of Tröger base derived molecular torsion balances (MTBs), initially introduced by Wilcox and co‐workers, showing an aromatic edge‐to‐face interaction in the folded, but not in the unfolded form, were synthesized. A fluorine atom or a trifluoromethyl group was introduced onto the edge ring in ortho‐, meta‐, and para‐positions to the C?H group interacting with the face component. The substituents on the face component were varied from electron‐donating to electron‐withdrawing. Extensive X‐ray crystallographic data allowed for a discussion on the conformational behavior of the torsional balances in the solid state. While most systems adopt the folded conformation, some were found to form supramolecular intercalative dimers, lacking the intramolecular edge‐to‐face interaction, which is compensated by the gain of aromatic π‐stacking interactions between four aryl rings of the two molecular components. This dimerization does not take place in solution. The folding free enthalpy ΔGfold of all torsion balances was determined by 1H NMR measurements by using 10 mM solutions of samples in CDCl3 and C6D6. Only the ΔGfold values of balances bearing an edge‐ring substituent in ortho‐position to the interacting C?H show a steep linear correlation with the Hammett parameter (σmeta) of the face‐component substituent. Thermodynamic analysis using van′t Hoff plots revealed that the interaction is enthalpy‐driven. The ΔGfold values of the balances, in addition to partial charge calculations, suggest that increasing the polarization of the interacting C?H group makes a favorable contribution to the edge‐to‐face interaction. The largest contribution, however, seems to originate from local direct interactions between the substituent in ortho‐position to the edge‐ring C?H and the substituted face ring.  相似文献   

8.
Microfluidic device embedding electrodes realizes cell manipulation with the help of dielectrophoresis. Cell manipulation is an important technology for cell sorting and cell population purification. Till now, the theory of dielectrophoresis has been greatly developed. Microfluidic devices with various arrangements of electrodes have been reported from the beginning of the single non‐uniform electric field to the later multiple physical fields. This paper reviews the research status of microfluidic device embedding electrodes for cell manipulation based on dielectrophoresis. Firstly, the working principle of dielectrophoresis is explained. Next, cell manipulation approaches based on dielectrophoresis are introduced. Then, different types of electrode arrangements in the microfluidic device for cell manipulation are discussed, including planar, multilayered and microarray dot electrodes. Finally, the future development trend of the dielectrophoresis with the help of microfluidic devices is prospected. With the rapid development of microfluidic technology, in the near future, high precision, high throughput, high efficiency, multifunctional, portable, economical and practical microfluidic dielectrophoresis will be widely used in the fields of biology, medicine, agriculture and so on.  相似文献   

9.
A sample‐type protein monolayer, that can be a stepping stone to practical devices, can behave as an electrically driven switch. This feat is achieved using a redox protein, cytochrome C (CytC), with its heme shielded from direct contact with the solid‐state electrodes. Ab initio DFT calculations, carried out on the CytC–Au structure, show that the coupling of the heme, the origin of the protein frontier orbitals, to the electrodes is sufficiently weak to prevent Fermi level pinning. Thus, external bias can bring these orbitals in and out of resonance with the electrode. Using a cytochrome C mutant for direct S?Au bonding, approximately 80 % of the Au–CytC–Au junctions show at greater than 0.5 V bias a clear conductance peak, consistent with resonant tunneling. The on–off change persists up to room temperature, demonstrating reversible, bias‐controlled switching of a protein ensemble, which, with its built‐in redundancy, provides a realistic path to protein‐based bioelectronics.  相似文献   

10.
This paper presents the application of the discrete dielectrophoretic force to separate polystyrene particles from red blood cells. The separation process employs a simple microfluidic device that is composed of interdigitated electrodes and a microchannel. The discrete dielectrophoretic force is generated by adjusting the duty cycle of the applied voltage. The electrodes make a tilt angle with the microchannel to change the moving direction of the red blood cells. By adjusting the voltage magnitude and duty cycle, we investigate the deflection of red blood cells and the variation of cell velocity along electrode edge under positive dielectrophoresis. The experiments with polystyrene particles show that the enrichment of the particles is greater than 150 times. The maximum separation efficiency is 97% for particle-to-cell number ratio equal to 1:2000 in the sample having high cell concentration. Using the appropriate applied voltage magnitude and duty cycle, the discrete dielectrophoretic force can prevent the clogging of microchannel while successfully separating the particles from the cells with high enrichment and efficiency. The proposed principle can be readily applied to dielectrophoresis-based devices for biomedical sample preparation or diagnosis such as the separation of rare or infected cells from a blood sample.  相似文献   

11.
Cell rotation is widely required in various fields as an important technique for single cell manipulation. Usually, the electro‐rotational manipulation of single cells by dielectrophoresis technologies requires at least three electrodes to generate rotating electric fields which induce cells to rotate. Here, we present a novel microfluidic chip capable of rotating single cell using only two planar electrodes by taking polarized cells as the extra electrodes with phase‐shifted signal. To demonstrate this idea, we configured two parallel and planar electrodes as basic dielectrophoresis elements and placed trenches above these electrodes to attract cells, which were in turn polarized to be electrodes. Through simulation, we confirmed the functional structure of the device works well to generate proper rotating electric fields for cell rotation. Through experiment, we successfully demonstrated controlled electro‐rotation of HeLa and HepaRG cells. The novel electro‐rotation mechanism not only simplifies the micro‐device structure but also reduces the complexity of single cell rotation operation which will be a benefit to the potential users.  相似文献   

12.
《Electroanalysis》2006,18(18):1815-1820
An aptamer immobilization method based electrically addressed fabrication has been developed for the preparation of aptamer‐modified arrayed electrodes, by which the human IgE aptamer was oriented and immobilized on the gold electrode surface. The optimization of the experimental conditions including the applied potential, time and scan rate of potential was investigated. The method was successfully used to immobilize the aptamer onto the desired electrodes, pixel by pixel, based on the electrically addressed approach. Compared to the control electrodes, the resulting aptamer‐modified electrodes showed their specific recognition for human IgE. The present method owns several advantages such as rapid and simple immobilization as well as its automatic addressed capability by the electric approach.  相似文献   

13.
A MEMS‐based impedance biosensor was designed, fabricated, and tested to effectively detect the presence of bacterial cells including E. coli O157:H7 and Salmonella typhimurium in raw chicken products using detection region made of multiple interdigitated electrode arrays. A positive dielectrophoresis based focusing electrode was used in order to focus and concentrate the bacterial cells at the centerline of the fluidic microchannel and direct them toward the detection microchannel. The biosensor was fabricated using surface micromachining technology on a glass substrate. The results demonstrate that the device can detect Salmonella with concentrations as low as 10 cells/mL in less than 1 h. The device sensitivity was improved by the addition of the focusing electrodes, which increased the signal response by a factor between 6 and 18 times higher than without the use of the focusing electrodes. The biosensor is selective and can detect other types of pathogen by changing the type of the antibody immobilized on the detection electrodes. The device was able to differentiate live from dead bacteria.  相似文献   

14.
A rapid, low‐cost, highly sensitive, and specific capacitive aptasensor is presented for detection of lipopolysaccharides (LPS). Exposure to LPS could cause fever, gram‐negative sepsis, septic shock, and eventual death. Hence, rapid, low cost, and sensitive detection of LPS is pivotal for the safety of food, pharmaceutical, and medical devices and products. In this work, a capacitive sensing method based on alternating current electrokinetics is developed to achieve rapid and specific detection of LPS. This method uses an alternating current signal for two purposes. One is to induce positive dielectrophoresis, which attracts LPS toward the sensor electrodes’ surface and accelerates its binding with the immobilized aptamer probe. The other purpose is to simultaneously sense the binding reaction by measuring the interfacial capacitance change on the electrodes’ surface. The testing procedures and instrumentation setup of this sensing platform are significantly simplified while finding quantitative concentrations of both analytical and complex samples within 30 s. When testing analytical samples of LPS from Escherichia coli O55:B5, a LOD of 4.93 fg/mL is achieved. The recovery analysis is also performed with LPS spiked in a complex matrix and good recovery rates are demonstrated. This work provides an affordable and field‐deployable platform for highly sensitive and real‐time LPS detection.  相似文献   

15.
In our previous paper (Analyst, 2014 , 139, 5339) we introduced the concept of the back‐to‐back electrochemical design where the commonly overlooked back of screen‐printed electrodes are utilised to provide electroanalytical enhancements in screen‐printed electroanalytical sensors. In this configuration the overall sensor comprises of a flexible polyester substrate which has a total of two working, counter and reference electrodes present on the sensor, with a set of electrodes on each side of the substrate. The sensors are designed to allow for a commonly shared electrical connection to the potentiostat and do not require any specialised connections. In this paper we demonstrate proof‐of‐concept extending the electroanalytical utility of the back‐to‐back screen‐printed electrode sensors to bulk modified single‐walled carbon‐nanotubes and electrocatalytic cobalt phthalocyanine microband electrodes. The electroanalytical applications of these novel electrode configuration are exemplified towards the sensing of dopamine, capsaicin and hydrazine. This paper demonstrates the versatility of the back‐to‐back configuration where different surface modifications can be readily employed giving rise to enhancements in sensor performance.  相似文献   

16.
Cheng W  Li SZ  Zeng Q  Yu XL  Wang Y  Chan HL  Liu W  Guo SS  Zhao XZ 《Electrophoresis》2011,32(23):3371-3377
We present a feasible dielectrophoresis (DEP) approach for rapid patterning of microparticles on a reusable double-layer electrode substrate in microfluidics. Simulation analysis demonstrated that the DEP force was dramatically enhanced by the induced electric field on top interdigitated electrodes. By adjusting electric field intensity through the bottom electrodes on thin glass substrate (100 μm), polystyrene particles (10 μm) were effectively patterned by top electrodes within several seconds (<5 s). The particle average velocity can reach a maximum value of about 20.0±3.0 μm/s at 1 MHz with the strongest DEP force of 1.68 pN. This approach implements integration of functional electrodes into one substrate and avoids direct electrical connection to biological objects, providing a potential lab-on-chip system for biological applications.  相似文献   

17.
Stimuli‐responsive hydrogels are continuing to increase in demand in biomedical applications. Occluding a blood vessel is one possible application which is ideal for a hydrogel because of their ability to expand in a fluid environment. However, typically stimuli‐responsive hydrogels focus on bending instead of radial uniform expansion, which is required for an occlusion application. This article focuses on using an interdigitated electrode device to stimulate an electro‐responsive hydrogel in order to demonstrate a uniform swelling/deswelling of the hydrogel. A Pluronic‐bismethacrylate (PF127‐BMA) hydrogel modified with hydrolyzed methacrylic acid, in order to make it electrically responsive, is used in this article. An interdigitated electrode device was manufactured containing Platinum electrodes. The results in this paper show that the electrically biased hydrogels deswelled 230% more than the non‐biased samples on average. The hydrogels deswelled uniformly and showed no visual deformations due to the electrical bias. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1523–1528  相似文献   

18.
《Electroanalysis》2005,17(8):668-673
A self‐sampling‐and‐flow biosensor was fabricated by sandwiching a nitrocellulose strip on the working electrode side of the double‐sided microporous gold electrodes and a wicking pad on the counter electrode side. The double‐sided microporous electrodes were formed by plasma sputtering of gold on a porous nylon substrate. Sample was taken up to the enzyme‐immobilized working electrode by the capillary action of the front nitrocellulose strip dipped into the sample solution, analyzed electrochemically at the enzyme‐immobilized electrode, and diffuses out to the backside wicking pad through the micropores of the electrodes, constituting a complete flow cell device with no mechanical liquid‐transporting device. Biosensor was formed by co‐immobilizing the glucose oxidase and electron transfer mediator (ferrocene acetic acid) on the thioctic acid self‐assembled monolayer‐modified working electrode. A typical response time of the biosensor was about 5 min with the sensitivity of 2.98 nA/mM glucose, providing linear response up to 22.5 mM. To demonstrate the use of self‐sampling‐and‐flow biosensor, the consumption rate of glucose in the presence of yeast was monitored for five days.  相似文献   

19.
The assembly of carbon nanotubes (CNTs) across planner electrodes using dielectrophoresis (DEP) is one of the standard methods used to fabricate CNT-based devices such as sensors. The medium drag velocity caused by electrokinetic phenomena such as electrothermal and electroosmotic might drive CNTs away from the deposition area. This problem becomes critical at large-scale electrode structures due to the high attenuation of the DEP force. Herein, we simulated and experimentally validated a novel DEP setup that uses a top glass cover to minimize the medium drag velocity. The simulation results showed that the drag velocity can be reduced by 2–3 orders of magnitude compared with the basic DEP setup. The simulation also showed that the optimum channel height to result in a significant drag velocity reduction was between 100 μm and 240 μm. We experimentally report, for the first time, the assembly and alignment of CNT bridges across indium tin oxide (ITO) electrodes with spacing up to 125 μm. We also derived an equation to optimize the CNT's concentration in suspensions based on the electrode gap width and channel height. The deposition of long CNTs across ITO electrodes has potential use in transparent electronics and microfluidic systems.  相似文献   

20.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号