首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Atomic surface tensions are parameterized for use with solvation models in which the electrostatic part of the calculation is based on the conductor‐like screening model (COSMO) and the semiempirical molecular orbital methods AM1, PM3, and MNDO/d. The convergence of the calculated polarization free energies with respect to the numerical parameters of the electrostatic calculations is first examined. The accuracy and precision of the calculated values are improved significantly by adjusting two parameters that control the segmentation of the solvent‐accessible surface that is used for the calculations. The accuracy of COSMO calculations is further improved by adopting an optimized set of empirical electrostatic atomic radii. Finally, the electrostatic calculation is combined with SM5‐type atomic surface tension functionals that are used to compute the nonelectrostatic portions of the solvation free energy. All parameterizations are carried out using rigid (R) gas‐phase geometries; this combination (SM5‐type surface tensions, COSMO electrostatics, and rigid geometries) is called SM5CR. Six air–water and 76 water–solvent partition coefficients are added to the training set of air–solvent data points previously used to parameterize the SM5 suite of solvation models, thereby bringing the total number of data points in the training set to 2266. The model yields free energies of solvation and transfer with mean unsigned errors of 0.63, 0.59, and 0.61 kcal/mol for AM1, PM3, and MNDO/d, respectively, over all 2217 data points for neutral solutes in the training set and mean unsigned errors of 3.0, 2.7, and 3.1 kcal/mol, respectively, for 49 data points for the ions. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 340–366, 2000  相似文献   

3.
Many technically relevant chemical processes in the condensed phase involve as elementary reactive steps the formation of ions from neutral species or, as the opposite, recombination of ions. Such reactions that generate or annihilate charge defy the standard gas phase quantum chemical treatment, and also continuum solvation models are only partially able to account for the right amount of stabilization in solution. In this work, for such types of reaction, a solvation treatment involving the COSMO‐RS method is assessed, which leads to improved results, i.e., errors of only around 10 kJ/mol for both protic and aprotic solvents. The examples discussed here comprise protolysis reactions and organo halide heterolysis, for both of which a comparison with reliable experimental data is possible. It is observed that for protolysis, the quality of results does not strongly depend on the quantum chemical method used for energy calculation. In contrast, in the case of heterolytic carbon‐chlorine bond cleavage, clearly better results are obtained for higher correlated (coupled cluster) methods or the density functional M06‐2X, which is well known for its accuracy if applied to organic chemistry. This hints at least that the right answer is obtained for the right reason and not due to a compensation of errors from gas phase thermodynamics with those from the solvation treatment. Problems encountered with certain critical solvents or upon decomposing Gibbs free energies into heats or entropies of reaction are found to relate mostly to the parameterization of the H‐bonding term within COSMO‐RS. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
The ionization (dissociation) constant (pKa) is one of the most important properties of a drug molecule. It is reported that almost 68% of ionized drugs are weak bases. To be able to predict accurately the pKa value(s) for a drug candidate is very important, especially in the early stages of drug discovery, as calculations are much cheaper than determining pKa values experimentally. In this study, we derive two linear fitting equations (pKa = a × ΔE + b; where a and b are constants and ΔE is the energy difference between the cationic and neutral forms, i.e., ΔE = Eneutral?Ecationic) for predicting pKas for organic bases in aqueous solution based on a training/test set of almost 500 compounds using our previously developed protocol (OLYP/6‐311+G**//3‐21G(d) with the the conductor‐like screening model solvation model, water as solvent; see Zhang, Baker, Pulay, J. Phys. Chem. A 2010 , 114, 432). One equation is for saturated bases such as aliphatic and cyclic amines, anilines, guanidines, imines, and amidines; the other is for unsaturated bases such as heterocyclic aromatic bases and their derivatives. The mean absolute deviations for saturated and unsaturated bases were 0.45 and 0.52 pKa units, respectively. Over 60% and 86% of the computed pKa values lie within ±0.5 and ±1.0 pKa units, respectively, of the corresponding experimental values. The results further demonstrate that our protocol is reliable and can accurately predict pKa values for organic bases. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
We have computed pKa values for 11 substituted phenol compounds using the continuum Fuzzy‐Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides, and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within about 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed‐position grid points. Second, it uses either second‐ or first‐order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of using the first‐order technique. This approximation places the presented methodology between the Generalized Born and Poisson‐Boltzmann continuum solvation models with respect to their accuracy of reproducing the many‐body effects in modeling a continuum solvent. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO‐RS) at the Becke‐Perdew (BP)/Triple zeta valence with polarization functions (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic errors. Our results indicate that quantum chemical calculations combined with COSMO‐RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
In this study, we report the micro‐injection molding of ultra‐thin parts (100, 250, and 500 µm). The results show that the flow resistance increases as the cavity becomes thinner. The melt front is not symmetric when filling a four‐cavity ultra‐thin part and filling the eight‐cavity mold under a low temperature. If we increase the mold temperature or cavity thickness, the melt front becomes symmetric. Finally, we construct the operation windows of molding for three kinds of plastics (PS, PMMA, PC) and provide a molding range based on mold temperature and injections speed. Meanwhile, the relationship between the thickness and the operation windows are also investigated. The thinner the cavity is, the smaller the operation window is. We need to increase the injection speed significantly for molding the ultra‐thin parts with micro‐features on both surfaces which are 60 µm in thickness. Furthermore, we succeed in molding 30 µm ultra‐thin parts in this experiment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We illustrate the domain decomposition Conductor-like Screening Model (ddCOSMO) implementation and how to couple it with an existing classical or quantum mechanical (QM) code. We review in detail what input needs to be provided to ddCOSMO and how to assemble it, describe how the ddCOSMO equations are solved and how to process the results to assemble the required quantities, such as Fock matrix contributions for the QM case, or forces for the classical one. Throughout the article, we will make explicit references to the ddCOSMO module, which is an open source, Fortran 90 implementation of ddCOSMO that can be downloaded and distributed under the LGPL license.  相似文献   

10.
11.
With the negative environmental implications of the anthropogenic emission of greenhouse gases like CO2 having been scientifically established, emphasis is being placed on a concerted global effort to prevent such gases from reaching the atmosphere. Especially important are capture efforts at large point emission sources like fossil fuel power generation, natural gas processing, and various industrial plants. Given the importance and scale of such activities, it is a significant priority to optimize the capture process in terms of speed, energy requirements, and cost efficiency. For CO2 capture, in particular, multiple systems are being pursued both with near‐term retrofitting and medium‐ to long‐term designs in mind, including: (1) liquid solvents like amines, carbonates, and ionic liquids (ILs); (2) microporous sorbents like zeolites, activated carbon, and metal‐organic frameworks; (3) solid sorbents like metal‐oxides and ionic clays; and (4) polymeric and inorganic membrane separators. Each system is unique in its molecular‐level guest–host interactions, chemistry, heats of adsorption/desorption, and equilibrium thermodynamic and transport properties as a function of loading, temperature, and pressure. This opens up exciting opportunities for molecular modeling in the design and optimization of materials systems. Here, we offer a brief survey of molecular modeling applications in the field of carbon capture, with a few illustrative examples from our own work primarily involving amine solutions and ILs. Important molecular dynamics, Monte Carlo, and correlations‐based work in the literature relevant to CO2 capture in other systems are also discussed. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Two approaches to treat solvent polarization and reorientation effects for excited states of molecules and surfaces have been implemented in the recently developed MSINDO‐sCIS method (Gadaczek, Krause, Hintze, Bredow, J. Chem. Theory Comput. 2011, 7, 3675). They allow for an efficient calculation of analytical energy gradients and hence open the opportunity to investigate fluorescence effects or photochemical reactions in solution for large molecules that are difficult to treat with high‐level methods. Both approaches are based on the conductor‐like screening model (COSMO) (Klamt and Schüürmann, J. Chem. Soc., Perkin Trans. 1993, 2, 799) in combination with the configuration interaction singles (CIS) method (Foresman, Head‐Gordon, Pople, and Frisch, J. Phys. Chem. 1992, 96, 135). The paper gives a brief outline of the theoretical background. As a first application, solvent shifts of three well‐studied, environment‐sensitive fluorescent dyes (Kucherak, Didier, Mély, and Klymchenko, J. Phys. Chem. Lett. 2010, 1, 616) have been calculated and compared with experimental results and standard time‐dependent density functional theory. A statistical evaluation of MSINDO‐COSMO‐sCIS is provided for a set of 39 molecules suggested recently by Jacquemin et al. (Jacquemin, Planchat, Adamo, and Mennucci, J. Chem. Theory Comput. 2012, 8, 2359). Calculated vertical and adiabatic excitation energies and fluorescence energies are compared to experimental data. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The development of coarse‐grained (CG) models for large biomolecules remains a challenge in multiscale simulations, including a rigorous definition of CG representations for them. In this work, we proposed a new stepwise optimization imposed with the boundary‐constraint (SOBC) algorithm to construct the CG sites of large biomolecules, based on the s cheme of essential dynamics CG. By means of SOBC, we can rigorously derive the CG representations of biomolecules with less computational cost. The SOBC is particularly efficient for the CG definition of large systems with thousands of residues. The resulted CG sites can be parameterized as a CG model using the normal mode analysis based fluctuation matching method. Through normal mode analysis, the obtained modes of CG model can accurately reflect the functionally related slow motions of biomolecules. The SOBC algorithm can be used for the construction of CG sites of large biomolecules such as F‐actin and for the study of mechanical properties of biomaterials. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
A new implementation of analytical gradients for the polarizable continuum model is presented, which allows Hartree-Fock and density functional calculations taking into account both electrostatic and nonelectrostatic contributions to energies and gradients for closed and open shell systems. Simplified procedures neglecting the derivatives of the cavity surface and/or using single spheres for XHn groups have also been implemented and tested. The solvent-induced geometry relaxation has been studied for a number of representative systems in order to test the efficiency of the procedure and to investigate the role of different contributions. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 404–417, 1998  相似文献   

15.
A coupled‐cluster (CC) response functions theory for molecular solutes described with the framework of the polarizable continuum model (PCM) is presented. The theory is an extension to the dynamical molecular properties of the PCM‐CC analytic derivatives recently proposed for the calculation of static molecular properties (Cammi, Jr Chem Phys 2009, 131, 164104). The theory is presented for linear and quadratic response functions, and the operative expressions of these response functions can accurately account for the nonequilibrium solvation effects. The excitation energies and transition moments of the solvated chromophores have been determined from the linear response functions. Accurate expressions for gradients of excitation energies for the evaluation of the excited state properties have been also discussed. © 2012 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

16.
The need to simulate large-sized molecules or to deal with large series of compounds is a challenging topic in computational chemistry, which has stimulated the development of accurate semiempirical methods, such as the recently reported Recife Model 1 (RM1; J Comput Chem 2006, 27, 1101). Even though RM1 may prove to be of value simply due to the enhanced quantitative accuracy in gas phase, it is unclear how the new parameters optimized for RM1 affect the suitability of this semiempirical Hamiltonian to study chemical processes in condensed phases. To address this question, we report the parametrization of the MST/RM1 continuum model for neutral solutes in water, octanol, chloroform and carbon tetrachloride, and for ions in water. The results are used to discuss the transferability of the solvation parameters implemented in previous MST/AM1 and MST/PM3 models.  相似文献   

17.
An efficient version of the polarizable continuum model for solvation has been implemented in the Gaussian density-functional-based code called deMon. Solvation free energies of representative compounds have been calculated as a preliminary test. The hydration effects on the reaction profile of the Cl+CH3Cl→ClCH3+Cl reaction and the thermodynamics of the Menschutkin reaction have also been investigated. Finally, the conformational behavior of the 1,2-diazene cis–trans isomerization process in water was examined. Comparisons between the results obtained and the available experimental data and previous theoretical computations have been made. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 290–299, 1998  相似文献   

18.
19.
The three‐body fragment molecular orbital (FMO3) method is formulated for density‐functional tight‐binding (DFTB). The energy, analytic gradient, and Hessian are derived in the gas phase, and the energy and analytic gradient are also derived for polarizable continuum model. The accuracy of FMO3‐DFTB is evaluated for five proteins, sodium cation in explicit solvent, and three isomers of polyalanine. It is shown that FMO3‐DFTB is considerably more accurate than FMO2‐DFTB. Molecular dynamics simulations for sodium cation in water are performed for 100 ps, yielding radial distribution functions and coordination numbers. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
We present a density functional for first-principles molecular dynamics simulations that includes the electrostatic effects of a continuous dielectric medium. It allows for numerical simulations of molecules in solution in a model polar solvent. We propose a smooth dielectric model function to model solvation into water and demonstrate its good numerical properties for total energy calculations and constant energy molecular dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号