首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2018,30(8):1870-1879
A portable electroanalytical system applied for rapid and simultaneous determination of uric acid (UA) and nitrite (NIT) in human biological fluids (urine, saliva and blood) is reported. The system is based on batch‐injection analysis with multiple‐pulse amperometric (BIA‐MPA) detection using screen‐printed electrodes (SPEs) modified with multi‐walled carbon nanotubes. Sample dilution in optimized electrolyte (0.1 mol L−1 Britton‐Robinson buffer pH 2) followed by injection of 100 μL on the electrode surface using an electronic micropipette is performed. UA is detected at +0.45 V and both UA+NIT at +0.70 V. Linear calibration plots for UA and NIT were obtained over the range of 1–500 μmol L−1 with detection limits of 0.05 and 0.06 μmol L−1, respectively. For comparison, a differential‐pulse voltammetric (DPV) method was optimized, and linear calibration plots for UA and NIT were obtained over range of 1–30 μmol L−1 and 1–40 μmol L−1 with detection limits of 0.1 and 0.3 μmol L−1, respectively. BIA‐MPA is highly precise (RSD<1.3 %), fast (160 h−1) and free from sample‐matrix interferences as recovery values ranged from 77 to 121 % for spiked samples (short contact time of sample aliquot with SPE). Contrarily, recovery tests conducted using DPV did not provide adequate recovery values (>150 %), probably due to the longer contact time of the SPE with the biological samples during analysis leading to a severe interference of sample matrices.  相似文献   

2.
《Electroanalysis》2017,29(10):2340-2347
This paper proposes the use of the boron‐doped diamond electrode (BDDE) in flow and batch injection analysis (FIA and BIA) systems with multiple‐pulse amperometric (MPA) detection for the determination of warfarin (WA) in pharmaceutical formulations. The electrochemical behavior of WA obtained by cyclic voltammetry (CV) in 0.1 mol L−1 phosphate buffer shows an irreversible oxidation process at +1.0 V (vs Ag/AgCl). The MPA was based on the application of two sequential potential pulses as a function of time on BDDE: (1) for WA detection at +1.2 V/100 ms and; (2) for electrode surface cleaning at −0.2 V/200 ms. Both hydrodynamic systems (FIA‐MPA and BIA‐MPA) used for WA determination achieved high precision (with relative standard deviations around 2 %, n =10), wide linear range (2.0−400.0 μmol L−1), low limits of detection (0.5 μmol L−1) and good analytical frequency (94 h−1 for FIA and 130 h−1 for BIA). The WA determination made by the proposed methods was compared to the official spectrophotometric method. The FIA‐MPA and BIA‐MPA methods are simple and fast, being an attractive option for WA routine analysis in pharmaceutical industries.  相似文献   

3.
《Electroanalysis》2018,30(2):283-287
A system based on batch injection analysis (BIA) associated with amperometric detection at screen‐printed carbon electrode was used for the precise and rapid quantification of the anesthetics compounds benzocaine and tricaine in fresh fish fillets. Along this study, the best conditions for the BIA‐amperometry system were stablished for the rapid determination of these compounds. The results obtained demonstrate that the proposed method is an interesting alternative to the chromatographic methods, once it allows to perform rapid analysis (more than 300 injections per hour) with low limits of detection (3.02×10−8 mol L−1 for benzocaine and 3.19×10−8 mol L−1 for tricaine), using just 80 μL of sample for each analysis. Furthermore, it was possible to obtain high repeatability for both compounds analyzed, demonstrating good performance. The simple sample preparation developed in this study drastically reduced the amount of fat in the fish extract, favoring precision, as shown by the results of the recovery studies of both anesthetics contained in the fish samples (values above 99 % for both analytes).  相似文献   

4.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

5.
A highly sensitive method was developed for the analysis of short‐chain perfluorinated alkyl acids (PFAAs) in serum samples using solid‐phase extraction (SPE) coupled with ion chromatography–electrospray ionization–mass spectrometry. The synthesized amino‐functionalized graphene oxide nanocomposites were used as an SPE sorbent for the enrichment of trace analytes and purification of samples. They exhibited high selectivity to polar compounds. The suppressor was employed to remove counterions and reduce background signals of mobile phase. These two crucial steps could effectively eliminate matrix effects and enhance analytical sensitivity. The lowest limits of quantification were 2.0 μg L−1 for perfluorobutanoic acid and perfluorovaleric acid, 1.0 μg L−1 for perfluorocaproic acid and 0.50 μg L−1 for perfluorobutane sulfonic acid, respectively. The procedure was successfully applied for determination of trace PFAAs in 25 serum samples. Mean recoveries ranged from 86.3 to 101.4% with relative standard deviations of 1.6–6.8%. The method allowed an excellent separation and quantification of short‐chain PFAAs that were difficult to analyze by conventional chromatography.  相似文献   

6.
《Electroanalysis》2017,29(11):2559-2564
This work presents the integration between phase‐separation by magnetic‐stirring salt‐induced high‐temperature liquid‐liquid extraction (PS‐MSSI‐HT‐LLE) and batch injection analysis with amperometric detection (BIA‐AD) as an alternative strategy for pre‐concentration of analytes before hydrodynamic electroanalysis. To demonstrate the performance of this analytical system, the emerging contaminant levofloxacin was quantified in tap, aquarium and lake water at low concentration level. In the optimized conditions, BIA‐AD enabled fast (160 h−1) and reproducible results (RSD<2 %) and the PS‐MSSI‐HT‐LLE allowed the detection of levofloxacin concentration levels not detected by direct electroanalysis (70 and 80 nmol L−1) corresponding to 100‐folds enrichment factors. The performance of proposed method was evaluated by addition‐recovery test and was obtained satisfactory recovery values (between 70 and 96 %). Moreover, PS‐MSSI‐HT‐LLE allows the pre‐concentration of many samples simultaneously, which is advantageous over pre‐concentration on working electrode surface (stripping methods).  相似文献   

7.
《Electroanalysis》2017,29(8):1968-1975
Hybrid magnetite/carbon quantum dots (MagNP/C‐dots) were prepared and their characterization performed by high resolution transmission electron microscopy (HR‐TEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). Because of their suitable magnetization and electrochemical properties, they were used as versatile electrode modifiers after magnetically confining onto screen printed carbon electrodes (SPE), with the aid of a miniature external magnet. The reported strategy introduces a convenient procedure for assembling modified electrodes, since the nanoparticles can be easily released by removing the magnet. The non‐enzymatic magnetic biosensor showed excellent performance in the determination of NADH at the concentration range 2×10−7 to 5×10−6 mol L−1, exhibiting a sensitivity of 0.15 μmol L−1 and detection limit of 20 nmol L−1. The MagNP/C‐dots/SPE sensor was also successfully applied for the determination of NADH in serum samples. The interference of typical biological molecules has also been investigated.  相似文献   

8.
This work describes the development of a novel method for glucose determination exploiting a photoelectrochemical‐assisted batch injection analysis cell designed and constructed with the aid of 3D printer technology. The PEC‐BIA cell was coupled to a LED lamp in order to control the incidence of light on the Cu2O/Ni(OH)2/FTO photoelectroactive platform. The electrochemical characteristics of Cu2O/Ni(OH)2/FTO photoelectroactive platform were evaluated by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The PEC‐BIA cell presented linear response range, limit of detection based on a signal‐to‐noise ratio of three, and sensitivity of 1–1000 μmol L?1, 0.76 μmol L?1 and 0.578 μA L μmol?1, respectively. The PEC‐BIA method presented a mean value of the recovery values of 97.0 % to 102.0 % when it was applied to glucose determination in artificial blood plasma samples which indicates the promising performance of the proposed system to determine glucose.  相似文献   

9.
《Electroanalysis》2018,30(2):296-303
In this work is presented a method for simultaneous determination of paracetamol (PA), acetylsalicylic acid (ASA) and caffeine (CA) in pharmaceutical tablets, using a bare boron‐doped diamond working electrode (BDDE) coupled to batch injection analysis system with multiple pulse amperometric detection (BIA‐MPA). The optimized sequence of fast potential pulses were applied on BDDE for acquisition of independent amperograms: +1.0 V for PA oxidation, +1.3 V for oxidation of PA and salicylic acid (SA) generated from a previous alkaline hydrolysis of ASA and +1.6 V in which the three analytes are oxidized (PA, SA and CA). Selective determination of PA is performed using the currents obtained at +1.0 V, while SA and CA signals are indirectly obtained using simple subtraction operations between peak currents from each amperogram and correction factors (CF's). The limitations of such approach on the precision and accuracy as function of BIA‐MPA conditions are discussed. Simultaneous determination of the target drugs in pharmaceutical tablets was performed by BIA‐MPA and the results compared to a HPLC‐DAD method. Under optimized conditions, the proposed method exhibits fast responses (180 injections per hour for the simultaneous determination of the three analytes) and suitable precision (RSDPA: 0.78 %; RSDSA: 1.09 %; RSDCA: 2.73 %). BIA‐MPA method is simple, portable and presents relative low‐cost.  相似文献   

10.
《Electroanalysis》2018,30(5):868-876
Antihistamines such as pheniramine (PHN) or chlorpheniramine (CPH) are commonly associated with naphazoline (NPZ) in eye drops and nasal decongestants. In this work, a batch‐injection analysis system with multiple pulse amperometric (BIA‐MPA) detection has been applied for the first time for fast simultaneous determination of naphazoline (NPZ) and pheniramine (PHN) or NPZ and chlorpheniramine (CPH). PHN or CPH was selectively detected at +1.1 V and both PHN and NPZ or CPH and NPZ were detected at +1.3 V using boron doped diamond (BDD) as working electrode and Britton‐Robinson (BR) buffer (pH=10.0) as supporting electrolyte. The current of NPZ can then be obtained by subtraction of the currents detected at both potential pulses and applying a correction factor (CF). The proposed method presented good intra‐day repeatability (RSD between 0.7 and 3.2 % for PHN; 0.7 and 2.1 % for CPH; 1.5 and 4.0 % for NPZ; n=20), high analytical frequency (>80 injections h−1), and limits of detection of 0.64, 0.47 and 0.11 μmol L−1 for PHN, CPH and NPZ, respectively. The results obtained with the proposed method are in agreement with those obtained by HPLC (95 % confidence level).  相似文献   

11.
《Electroanalysis》2018,30(8):1678-1688
In this work, an electrochemical sensor was constructed by applying two successive thin layers of glycine‐carbon nanotubes mixture and β‐cyclodextrin (CNTs‐Gly)/CD over glassy carbon electrode surface for some neurotransmitters determination. A host‐guest interaction between CD and neurotransmitters molecules is expected and resulted in enhanced sensitivity, selectivity and stability of sensor response. Other components of the sensor are crucial for the unique electrochemical response. Carbon nanotubes allowed large surface area for glycine distribution that provided hydrogen bonding to CD moieties and contributed to facilitated charge transfer. It was possible to determine 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the linear range of 0.1 μmol L−1 to 80 μmol L−1 with detection limit of 9.40 nmol L−1, quantification limit of 31.5 nmol L−1 and sensitivity of 4.16 μA/μmol L−1. The proposed sensor was applied in synthetic cerebrospinal fluids samples using random standard addition method. Also, the proposed sensor was used to determine DOPAC in presence of common interferences and acceptable recovery results were achieved for its analysis in real blood serum. Figures of merit for (CNTs‐Gly)/CD composite in terms of precision, robustness, repeatability and reproducibility were reported.  相似文献   

12.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

13.
This article highlights the potential use of multi‐walled carbon‐nanotube modified screen‐printed electrodes (SPEs) for the amperometric sensing of ciprofloxacin and compares the association of batch‐injection analysis (BIA) and flow‐injection analysis (FIA) with amperometric detection. Both analytical systems provided precise (RSD<5 %) and sensitive determination of ciprofloxacin (LOD<0.1 μmol L?1) within wide linear range (up to 200 μmol L?1). Accuracy of both methods was attested by recovery values (93–107 %) and comparison with capillary electrophoresis. The BIA system is completely portable (especially due to association with SPEs) and provided faster analyses (130 h?1) and more sensitive detection than the FIA system due to the higher flow rates of injection.  相似文献   

14.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

15.
An electrochemical sensor using glassy carbon electrode modified with carbon black within a poly(allylamine hydrochloride) film is proposed in this work. The novel sensor was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry using the redox probe Fe(CN)63−/4−. The sensor was applied for the simultaneous determination of dopamine (DA), paracetamol (PAR), amlodipine (AML), and rosuvastatin (RSV). The quantification of all four analytes was carried out by linear sweep voltammetry and presented a linear concentration range for all analytes from 1.0 to 90 μmol L−1, with limit of detection of 0.55, 1.3, 5.7, and 3.0 μmol L−1 for DA, PAR, AML, and RSV, respectively. This sensor was successfully applied in the simultaneous determination of these analytes in environmental, pharmaceutical, and biological samples.  相似文献   

16.
The simultaneous determination of usually employed anesthetics (procaine, lidocaine, and bupivacaine) has been developed and validated using CE with ultraviolet detection at 212 nm. The separation of these three drugs has been achieved in less than 7 min, using a temperature of 25ºC and 25 kV, with a 150 mM citrate buffer (pH 2.5) as BGE. Field‐amplified sample injection (FASI) has been used for on‐line sample preconcentration. Ultrapure water and ACN 50/50 (v/v) mixture gave the greatest enhancement factor when it was employed as an injection solvent. Injection voltage and time were optimized, being 13 kV and 13 s, the optimum values, respectively. To avoid the possible irreproducibility associated with the electrokinetic injection, an internal standard such as tetracaine, was employed. The instrumental detection limits (LOD S/N = 3) for the compounds ranged between 2.6 and 7.0 μg L−1 and the quantitation limits (LOQ S/N = 10) between 37.8 and 55.9 μg L−1. The detection limits obtained in real human urine samples ranged between 55.2 and 83.6 μg L−1 and the quantitation limits between 196.0 and 276.0 μg L−1. The proposed method has demonstrated its applicability to the analysis of these local anesthetics in urine samples without any pretreatment, allowing the rapid determination of these target analytes.  相似文献   

17.
For the construction of the sensor, three different carbon black (CB) materials (VULCAN XC72R, BLACK PEARLS 4750 and CB N220) were explored as modifying nanomaterial. Firstly, the electrochemical activity of the each SPE modified was compared by cyclic voltammetry and electrochemical impedance spectroscopy technique, using [Fe(CN)6]3?/4? as redox couple. After demonstrating that electrodes modified with different types of CB were characterized by improved electrochemical performances when compared with bare electrodes, and among them, electrodes modified with CB BP4750 is characterised by slightly better electrochemical properties, this type of electrode was used for the development of the analytical method. By applying SWV technique in 0.2 mol L?1 phosphate buffer (pH 3.0), the obtained analytical curves for ACP and LVF were found linearly from 4.0 to 80.0 μmol L?1 and from 0.90 to 70.0 μmol L?1 with limit of detection of 2.6 μmol L?1 and 0.42 μmol L?1 for ACP and LVF, respectively. Finally, the quantification of these drugs in river water was evaluated using the new here‐proposed sensor by recovery method in spiked samples, obtaining satisfactory recovery values. The results achieved demonstrated that the developed analytical tool is of great analytical interest being easy to use, cost‐effective, miniaturized, and thus suitable for low cost on site analysis.  相似文献   

18.
《Electroanalysis》2017,29(3):907-916
A porous electrode material combining the features of vertically aligned multi‐walled carbon nanotubes (VAMWCNT) and diamond‐like carbon films (DLC) have been developed for a highly sensitive electrochemical sensor. For working electrode preparation, DLC has been grown onto VAMWCNT, forming a porous, conductive and stable composite. The electrochemical performance of this DLC:VAMWCNT electrode has been investigated toward detection and analysis of three well‐known molecules, namely paracetamol, codeine and caffeine. A ternary mixture of these analytes was simultaneously determined under optimum experimental conditions using square‐wave voltammetry. Wide linear concentration ranges and the limits of detection of 3.34×10−7 mol L−1, 1.57×10−7 mol L−1 and 3.67×10−7 mol L−1 were obtained for paracetamol, codeine and caffeine, respectively. We conclude that the proposed voltammetric method and the DLC:VAMWCNT electrode comprise a reliable methodology for simultaneous determination of paracetamol, codeine and caffeine in biological matrix samples.  相似文献   

19.
《Electroanalysis》2018,30(9):2004-2010
The performance of screen‐printed electrodes modified in situ with tellurium film for the anodic stripping voltammetric (ASV) determination of Cu(II) is reported. It was found that two types of screen‐printed substrates, namely carbon and mesoporous carbon, were optimal for this application. The selected in situ tellurium film modified electrodes were applied for the square wave ASV determination of copper at μg L−1 concentration levels. Well‐defined and reproducible Cu oxidation stripping peaks were produced at a potential more negative than the anodic dissolution of tellurium. The highest sensitivity of Cu determination was achieved in 0.05 M HCl containing 50 μg L−1 Te(IV) after 300 s of accumulation at −0.5 V. Using the optimized procedure, a linear range from 2 to 35 μg L−1 of Cu(II) was obtained with a detection limit of 0.5 μg L−1 Cu(II) (S/N=3) for 300 s of deposition time. Both sensors, carbon TeF‐SPE and mesoporous carbon TeF‐SPE, were successfully applied for the quantification of Cu in a certified reference surface water sample.  相似文献   

20.
A molecularly imprinted polymer was synthesized and applied as a sorbent in the solid‐phase extraction device. The imprinted polymer was characterized by fourier‐transform infrared spectroscopy and scanning electron microscope. The results revealed that imprinted polymer possess sensitive selectivity and reliable adsorption properties for five NSAIDs. The imprinted polymer was successfully applied to the pre‐concentration for five NSAIDs in different water samples prior to UPLC‐MS/MS. In the early studies, several factors were investigated, including pH adjustment, the kind of elution solvent and the volume of elution solvent. Finally, we found that the pH 5 and an aliquot of 2 mL methanol were suitable for the water samples. The limits of detection and limits of quantitation of five nonsteroidal anti‐inflammatory drugs varied from 0.007 to 0.480 μg L−1 and 0.03 to 1.58 μg L−1, respectively. The spiking recoveries of the target analytes were 50.33‐127.64% at the levels of 0.2 μg L−1, 2 μg L−1 and 5 μg L−1. The precision and accuracy of this method showed a great increase compared with traditional solid‐phase extraction. The developed method was successfully applied to extraction and analysis of NSAIDs in different water samples with satisfactory results which could help us better understand their environmental fate and risk to ecological health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号