首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   

2.
Graphene oxide (GO) is a novel material with excellent adsorptive properties. However, the very small particles of GO can cause serious problems is solid-phase extraction (SPE) such as the high pressure in SPE system and the adsorbent loss through pores of frit. These problems can be overcome by covalently binding GO nanosheets to a support. In this paper, GO was covalently bonded to spherical silica by coupling the amino groups of spherical aminosilica and the carboxyl groups of GO (GO@SiO2). The successful immobilization of GO nanosheets on the aminosilica was confirmed by scanning electron microscopy and X-ray photoelectron spectroscopy. The spherical particle covered by GO with crumpled silk wave-like carbon sheets are an ideal sorbent for SPE of metal ions. The wrinkled structure of the coating results in large surface area and a high extractive capacity. The adsorption bath experiment shows that Cu(II) and Pb(II) can be quantitatively adsorbed at pH 5.5 with maximum adsorption capacity of 6.0 and 13.6 mg g−1, respectively. Such features of GO nanosheets as softness and flexibility allow achieving excellent contact with analyzed solution in flow-rate conditions. In consequence, the metal ions can be quantitatively preconcentrated from high volume of aqueous samples with excellent flow-rate. SPE column is very stable and several adsorption–elution cycles can be performed without any loss of adsorptive properties. The GO@SiO2 was used for analysis of various water samples by flame atomic absorption spectrometry with excellent enrichment factors (200–250) and detection limits (0.084 and 0.27 ng mL−1 for Cu(II) and Pb(II), respectively).  相似文献   

3.
In this study, an in‐tube solid‐phase microextraction column packed with mesoporous TiO2 nanoparticles, coupled with MALDI–TOF–MS, was applied to the selective enrichment and detection of phosphopeptides in complex biological samples. The mesoporous TiO2 nanoparticles with high specific surface areas, prepared by a sol–gel and solvothermal method, were injected into the capillary using a slurry packing method with in situ polymerized monolithic segments as frits. Compared with the traditional solid‐phase extraction method, the TiO2‐packed column with an effective length of 1 cm exhibited excellent selectivity (α‐casein/β‐casein/BSA molar ratio of 1:1:100) and sensitivity (10 fmol of a β‐casein enzymatic hydrolysis sample) for the enrichment of phosphopeptides. These performance characteristics make this system suitable for the detection of phosphorylated peptides in practical biosamples, such as nonfat milk.  相似文献   

4.
A method for the determination of 16 polycyclic aromatic hydrocarbons in water has been developed. First, we made a solid‐phase extraction column. After this, the parameters affecting the efficacy of the experimental method were optimized, including appropriate selection of a solid‐phase extraction column and cleanup conditions on columns. The separation was achieved by gas chromatography and detection with triple quadrupole tandem mass spectrometry. The method showed satisfactory linearity (R> 0.999) over the range assayed (0.01–1 μg/mL), and limits of quantification ranging from 0.0011 to 0.0199 μg/L. The recoveries ranged from 83 to 113%. The relative standard deviation is in the range 0.86–3.1%. The results indicated that this method had high selectivity and precision that was suitable for the simultaneous determination of 16 polycyclic aromatic hydrocarbons in water.  相似文献   

5.
An electroosmotic pump (EOP) capable of generating pressure above 3 MPa and μl/min flow rate with reverse phase mobile phases of HPLC was constructed and evaluated. The pump consisted of three parallel connected fused silica capillary columns (25 cm×320 μm I.D.) packed with 2 μm silica materials, hollow electrodes, a high voltage DC power supply, and a liquid pressure transducer. The EOP was applied in a capillary liquid chromatographic system for mobile phase delivery instead of a mechanical pump. Standard samples containing thiourea, naphthalene, anthracene, phenanthrene and acetonitrile were separated on a 15 cm×320 μm I.D. 5 μm Chromasil C18 packed capillary column with acetonitrile/water as mobile phase.  相似文献   

6.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

7.
The surface of a stainless‐steel wire was platinized using electrophoretic deposition method to create a high‐surface‐area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless‐steel needle to fabricate an in‐needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2–0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001–1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9–13.5%. The reinforced in‐needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples.  相似文献   

8.
A miniaturized, flexible, and low‐cost capillary ion chromatography system has been developed for anion analysis in water. The ion chromatography has an open platform, modular design, and allows for ease of modification. The assembled platform weighs ca. 0.6 kg and is 25 × 25 cm in size. Isocratic separation of common anions (F, Cl, NO2, Br, and NO3) could be achieved in under 15 min using sodium benzoate eluent at a flow rate of 3 μL/min, a packed capillary column (0.150 × 150 mm) containing Waters IC‐Pak 10 μm anion exchange resin, and light‐emitting diode based indirect UV detection. Several low UV light‐emitting diodes were assessed in terms of sensitivity, including a new 235 nm light‐emitting diode, however, the highest sensitivity was demonstrated using a 255 nm light‐emitting diode. Linear calibration ranges applicable to typical natural water analysis were obtained. For retention time and peak area repeatability, relative standard deviation values ranged from 0.60–0.95 and 1.95–3.53%, respectively. Several water samples were analysed and accuracy (recovery) was demonstrated through analysis of a prepared mixed anion standard. Relative errors of –0.36, –1.25, –0.80, and –0.76% were obtained for fluoride, chloride, nitrite, and nitrate, respectively.  相似文献   

9.
In this paper, the simultaneous separation of several polyphenols such as (+)‐catechin, (–)‐epicatechin, (–)‐epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 μm) packed with bidentate C18 particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H2O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20°C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R2 > 0.9992) was achieved over a concentration working range of 2–100 μg/mL for all the analytes. LOD and LOQ were 1 and 2 μg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.  相似文献   

10.
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro‐liquid chromatography system. Fully porous, core–shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub‐2 μm fully porous as well as the 2.7 μm core–shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56–2.69) before correction for extra‐column contribution compared to normal‐bore columns. Moreover, the influence of extra‐column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub‐2 μm fully porous particle packed column for ultra‐fast liquid chromatography.  相似文献   

11.
In this work, an open‐tubular capillary liquid‐phase column was prepared by modifying chain polymer on the inner surface of capillary and chemical bonding of metal organic frameworks, NH2‐UiO‐66, to the brushes of chain polymer (poly(glycidyl methacrylate)). Besides advantages of facial preparation and good permeability, the chain polymer effectively increases the modification amount of NH2‐UiO‐66 nanoparticles to increase the phase ratio of open‐tubular capillary column and enhance the interactions with analytes. The results of scanning electron microscope energy‐dispersive X‐ray spectra indicated that NH2‐UiO‐66 nanoparticles were successfully bonded to the chain polymer. Because of the hydrophobic interaction and hydrogen bonding interaction between the analytes and the ligand of NH2‐UiO‐66, different analytes were well separated on the NH2‐UiO‐66‐modified poly(glycidyl methacrylate) capillary (1.12 m × 25 μm id × 365 μm od) with the high absolute column efficiency reaching 121 477 plates, benefiting from an open‐tubular column and low mass transfer resistance provided by polymer brush and metal–organic framework crystal. The relative standard deviations of the retention time for run‐to‐run, day‐to‐day, and column‐to‐column (= 3) runs are below 4.28%, exhibiting good repeatability. Finally, the column was successfully applied to separation of flavonoids in licorice.  相似文献   

12.
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R s = 1.80 for naproxen to R s = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R s value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R s = 0.89).  相似文献   

13.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

14.
The biomonitoring of hydroxy polycyclic aromatic hydrocarbons in urine, as a direct way to access multiple exposures to polycyclic aromatic hydrocarbons, has raised great concerns due to their increasing hazardous health effects on humans. Solid‐phase extraction is an effective and useful technique to preconcentrate trace analytes from biological samples. Here, we report a novel solid‐phase extraction method using a graphene oxide incorporated monolithic syringe for the determination of six hydroxy polycyclic aromatic hydrocarbons in urine coupled with liquid chromatography‐tandem mass spectrometry. The effect of graphene oxide amount, washing solvent, eluting solvent, and its volume on the extraction performance were investigated. The fabricated monoliths gave higher adsorption efficiency and capacity than the neat polymer monolith and commercial C18 sorbent. Under the optimum conditions, the developed method provided the detection limits (S/N = 3) of 0.02–0.1 ng/mL and the linear ranges of 0.1–1500 ng/mL for six analytes in urine sample. The recoveries at three spiked levels ranged from 77.5 to 97.1%. Besides, the intra column‐to‐column (n = 3) and inter batch‐to‐batch (n = 3) precisions were ≤ 9.8%. The developed method was successfully applied for the determination of hydroxy polycyclic aromatic hydrocarbons in urine samples of coke oven workers.  相似文献   

15.
Polymer monolithic stationary phases are designed as a continuous interconnected globular material perfused by macropores. Like packed column, where separation efficiency is related to particle diameter, the efficiency of monoliths can be enhanced by tuning the size of both the microglobules and macropores. This protocol described the synthesis of poly(styrene-co-divinylbenzene) monolithic stationary phases in capillary column formats. Moreover, guidelines are provided to tune the macropore structure targeting high-throughput and high-resolution monolith chromatography. The versatility of these columns is exemplified by their ability to separate tryptic digests, intact proteins, and oligonucleotides under a variety of chromatographic conditions. The repeatability of the presented column fabrication process is demonstrated by the successful creation of 12 columns in three different column batches, as evidenced by the consistency of retention times (coefficients of variance [c.v.] = 0.9%), peak widths (c.v. = 4.7%), and column pressures (c.v. = 3.1%) across the batches.  相似文献   

16.
M. Guček  B. Pihlar 《Chromatographia》2000,51(1):S139-S142
Summary A packing procedure was adopted for capillary electrochromatography (CEC) that produces capillary columns with high separation efficiencies. The columns were fully packed, 50 cm long, with UV detection being performed through the packed section 30 cm from the inlet end. The CEC experiments were run at ambient pressure, with no additional pressure applied to the ends of the column. The stationary phase (octadecyl silica (ODS), 5 μm) promoted a high velocity electroosmotic flow (EOF), enabling rapid and efficient separation of a hydrocarbon test mixture. Some 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives of mono- and disaccharides were baseline separated, using a 5 mM NaH2PO4 in 80% acetonitrile and 20% water (v/v) buffer solution. CEC shows promise for future applications in carbohydrate analysis. Presented at Balaton Symposium on High Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

17.
Eicosapentaenoic and docosahexaenoic acids are important bio‐active fatty acids in fish oils. Monolithic HPLC columns both in the polymeric cation exchange (silver‐ion) and RP formats were compared with corresponding packed columns for the isolation of these acids from tuna oil ethyl esters. Monolithic columns in both formats enabled rapid (typically 5–10 min) separations compared with packed columns (30 min). Polymeric monolithic silver‐ion disc column rapidly furnished mixtures of eicosapentaenoic and docosahexaenoic esters (90% purity) within 5–10 min, but was unable to resolve individual esters. A preparative version of the same column (80 mL bed volume) enabled isolation (>88% purity) of 100 mg quantities of eicosapentaenoic and docosahexaenoic esters from esterified tuna oil within 6 min. Baseline separation of eicosapentaenoic and docosahexaenoic esters was achieved on all RP columns. The results show that there is potential to use polymeric monolithic cation exchange columns for scaled‐up preparation of eicosapentaenoic and docosahexaenoic ester concentrates from fish oils.  相似文献   

18.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

19.
This paper describes the preparation and optimization of packed capillary columns for reversed‐phase separation of steroids with CEC. The fabrication of on‐column frits is considered to be the most important step for obtaining a reproducible packed column for CEC separation. Porous silicate frits were generated in a fused‐silica capillary by heating the silica gel/sodium hydroxide solutions electrically. The optimized conditions involve silica gel (10.8%), sodium hydroxide (5.8%), and heating time (5 sec) with heating voltage (5V) for obtaining a 100‐μ end‐frit that can withstand pressure over 6000 psi. A HPLC pump was utilized to pack the 5‐μm ODS particle slurry into the capillary column. The ODS packed capillaries were then utilized for the separation of four anabolic cholesterols with a capillary electrophoresis system without pressurization of the column. The reproducibility of the packed columns was evaluated by measuring the relative standard deviations of four steroids. The relative standard deviations of migration time for column‐to‐column, day‐to‐day, and run‐to‐run are less than 7%, 2%, and 1% for four steroids, respectively.  相似文献   

20.
Ginger, a widely used spice and traditional Chinese medicine, is prone to be contaminated by mycotoxins. A simple, sensitive, and reproducible method based on immunoaffinity column clean‐up coupled with HPLC and on‐line postcolumn photochemical derivatization with fluorescence detection was developed for the simultaneous determination of aflatoxins (AFs) B1, B2, G1, G2, and ochratoxin A (OTA) in 25 batches of gingers and related products marketed in China for the first time. The samples were first extracted by ultrasonication with methanol/water (80:20, v/v) and then cleaned up with immunoaffinity columns for analysis. Under the optimized conditions, the LODs and LOQs for the five mycotoxins were 0.03–0.3 and 0.1–0.9 μg/kg, respectively. The average recoveries ranged from 81.3–100.8% for AFs and from 88.6–99.5% for OTA at three spiking levels. Good linearity was observed for the analytes with correlation coefficients all >0.9995. All moldy gingers were contaminated with at least one kind of the five investigated mycotoxins, while none of them were found in normal gingers. Ginger powder samples were contaminated slightly with the contamination levels below the LOQs, while ginger tea bags were mainly contaminated by OTA at 1.05–1.19 μg/kg and ginger black tea bags were mainly contaminated by AFs at 3.37–5.76 μg/kg. All the contamination levels were below the legally allowable limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号