首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

2.
Graphene oxide (GO) nanosheets were incorporated into an organic polymer monolith containing 3‐acrylamidophenylboronic acid (AAPBA) and pentaerythritol triacrylate (PETA) to form a novel monolithic stationary phase for CEC. The effects of the mass ratio of AAPBA/PETA, the amount of GO, and the volume of porogen on the morphology, permeability and pore properties of the prepared poly(AAPBA‐GO‐PETA) monoliths were investigated. A series of test compounds including amides, alkylbenzenes, polycyclic aromatics, phenols, and anilines were used to evaluate and compare the separation performances of the poly(AAPBA‐GO‐PETA) and the parent poly(AAPBA‐co‐PETA) monoliths. The results indicated that incorporation of GO into monolithic column exhibited much higher resolutions (>1.5) and column efficiency (62 000 ~ 110 000 plates/m for toluene, DMF, formamide, and thiourea) than the poly(AAPBA‐co‐PETA). The successful application in isocratic separation of peptides suggests the potential of the GO incorporated monolithic column in complex sample analysis. In addition, the reproducibility and stability of the prepared poly(AAPBA‐GO‐PETA) monolith was assessed. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of this monolith for alkylbenzenes’ retention were satisfactory with the RSDs less than 1.8% (n = 5), 3.7% and 5.6% (n = 3), respectively, indicating the effectiveness and practicability of the proposed method.  相似文献   

3.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   

4.
Pepsin‐modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)‐nefopam. Furthermore, the electrochromatographic performance of the pepsin‐functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column‐to‐column <0.70, n = 20; and batch‐to‐batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)‐nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme‐modified affinity capillary monolith for enantioseparation.  相似文献   

5.
A novel o‐phenanthroline‐immobilized ionic‐liquid‐modified hybrid monolith for capillary electrochromatography was synthesized based on chloropropyl‐silica, which was prepared by the in situ polymerization of tetramethoxysilane and 3‐chloropropyltrimethoxysilane via a sol–gel process. The morphology of the hybrid monolith was characterized by scanning electron microscopy, and relatively stable anodic electroosmotic flow was observed under a broad pH ranged from pH 3.0 to 9.0. The separation mechanism was investigated by separating four neutral molecules (toluene, dimethylformamide, formamide, and thiourea). The obtained hybrid monolith possessed an obviously reversed‐phase retention mechanism, but when the acetonitrile content in the mobile phase was >90% v/v, a weak hydrophilic mechanism was observed on the resultant o‐phenanthroline‐modified chloropropyl‐silica hybrid monolith. The reproducibility of the column was also investigated by measuring relative standard deviations of the migration time for four neutral molecules. Relative standard deviations of run to run (n = 3), day to day (n = 3), and column to column (n = 3) were in the range of 0.4–0.7, 0.9–2.1, and 1.4–3.3%, respectively. Basic separations of various polar analytes including phenols and aromatic amines were successfully achieved.  相似文献   

6.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

7.
Boronate affinity chromatography (BAC) is an important tool for specific capture and separation of cis-diol-containing compounds such as glycoproteins, RNA and carbohydrates. Only a few reports on monolithic column-based BAC have appeared. In this paper, boronate functionalized monolithic capillary column was synthesized by in situ free radical polymerization for the first time. The prepared column was first characterized in terms of morphology, pore properties, capacity and retention mechanisms. The column exhibited uniform open channel network and high capture capacity. Systematical investigation on the retention mechanism revealed that multiple intermolecular interactions occur between the analytes and the boronate affinity monolith, including boronate affinity, reversed-phase, cation-exchange and hydrogen bonding interactions, depending on the conditions used. In addition, the presence of Lewis base such as fluoride ion in the mobile phase was found to be favorable to the complexation between cis-diol-containing compounds with the boronic acid ligand under less basic conditions. On the basis of these fundamental investigations, the prepared monolithic column was then applied to the capture of adenosine and flavin adenine dinucleotide. The investigations in this study provide sound understanding not only on how to manipulate the separation selectivity through selection of appropriate mobile phase composition on the currently prepared columns but also on how to design next-generation columns with desired properties and functions.  相似文献   

8.
A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29Si nuclear magnetic resonance spectroscopy and N2 adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m2/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).  相似文献   

9.
An organic‐silica hybrid monolith was prepared by a single‐step ring‐opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS‐epoxy), polyethylenimine (PEI), and β‐cyclodextrin (β‐CD) in a ternary porogenic solvent consisting of polyethylene glycol, 1,4‐butanediol, and 1‐propanol. The framework of POSS‐PEI hybrid monolith could offer well‐defined 3D skeleton, while β‐CD with the ability of forming a host‐guest inclusion complexes with a variety of compounds could show an ability of specific selection. The obtained hybrid monoliths were successfully applied for separation of phenols, benzoic acids, and nucleobases. Especially due to the introduction of β‐CD, positional isomers including hydroquinone and resorcinol, o‐nitrophenol and p‐nitrophenol, as well as p‐chlorophenol and o‐chlorophenol were baseline separated and the column efficiency reached 82 300 plates/m for hydroquinone.  相似文献   

10.
A simple “one‐pot” approach for the preparation of a new vinyl‐functionalized organic–inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica‐based monolith, while 1‐hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed‐phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation‐exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m.  相似文献   

11.
A novel strategy for preparation of a boronate affinity hybrid monolith was developed using a Cu(I)-catalyzed 1,3-dipolar azide–alkyne cycloaddition (CuAAC) reaction of an alkyne–boronate ligand with an azide-functionalized monolithic intermediate. An azide-functionalized hybrid monolith was first synthesized via a single-step procedure to provide reactive sites for click chemistry; then the alkyne–boronate ligands were covalently immobilized on the azide-functionalized hybrid monolith via an in-column CuAAC reaction to form a boronate affinity hybrid monolith under mild conditions. The boronate affinity monolith was characterized and evaluated by means of elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The boronate affinity hybrid monolith exhibited excellent specificity toward nucleosides and glycoproteins, which were chosen as test cis-diol-containing compounds under neutral conditions. The binding capacity of the monolith for the glycoprotein ovalbumin was 2.36 mg?·?g-1 at pH 7.0. The practicability of the boronate affinity hybrid monolithic material was demonstrated by specific capture of the glycoproteins ovalbumin and ovotransferrin from an egg sample.
Figure
A novel strategy for preparation of boronate affinity hybrid monolith was developed by utilizing Cu(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC). The obtained boronate affinity hybrid monolith exhibited excellent performance for isolation and enrichment of nucleosides and glycoproteins and was successfully employed to specific capture of glycoproteins from the egg sample  相似文献   

12.
A phenylboronic acid-silica hybrid monolithic column for capillary liquid chromatography (cLC) was prepared through one-pot process by using 4-vinylphenylboronic acid (VPBA) and alkoxysilanes simultaneously. The effects of the molar ratio of tetramethyloxysilane/γ-methacryloxypropyltrimethoxysilane (TMOS/γ-MAPS), amount of VPBA, and the volume of diethylene glycol (DEG) on the morphologies, permeabilities and pore properties of the prepared VPBA-silica hybrid monolithic columns were studied in detail. A relatively uniform monolithic structure with high porosity was obtained with optimized ingredients. A series of cis-diol-containing compounds, alkylbenzenes, amides, and anilines were utilized to evaluate the retention behaviors of the VPBA-silica hybrid monolithic column. The result demonstrated that the prepared VPBA-silica hybrid monolithic column exhibited multiple interactions including hydrophobicity, hydrophilicity, as well as cation exchange apart from the expected affinity interaction. The run-to-run, column-to-column and batch-to-batch reproducibility of the VPBA-silica hybrid monolith were satisfactory with the relative standard deviations (RSDs) less than 1.63% (n = 5), 2.02% (n = 3) and 2.90% (n = 5), respectively, indicating the effectiveness and practicability of the proposed method. In addition, the VPBA-silica hybrid monolithic column was further applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA), respectively. The successful applications suggested the potential of the VPBA-silica hybrid monolith in proteome analysis.  相似文献   

13.
A restricted‐access material–hybrid monolithic column was prepared based on single‐component organosiloxane and dynamic grafting of δ‐gluconolactone for on‐line solid phase extraction of tetracycline antibiotic residues from milk. The hybrid monolithic column was prepared in a stainless‐steel chromatographic column using methyltrimethoxysilane as the single precursor. δ‐Gluconolactone was covalently coupled to aminopropyl derivatized hybrid monolithic column, which formed hydrophilic structures on the surface of the pore of the restricted‐access material–hybrid monolithic column. The columns were characterized by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, nitrogen adsorption, contact angle analysis, dynamic adsorption, and chromatographic performance evaluation. The restricted‐access material–hybrid monolithic column was applied to the on‐line extraction of tetracycline residues from milk. An enrichment factor of 15.8 and a good sample clean‐up effect were obtained under the optimized conditions. The recoveries of the three spiked milk samples were between 81.7 and 102.5% with relative standard deviations (n = 3) in the range of 2–5%. The limits of detection (S/N = 3) for target compounds were in the range of 3.80–9.03 μg/kg. The results show that the on‐line extraction using the restricted‐access material–hybrid monolithic column was powerful for food sample pretreatment with high selectivity and good clean‐up effect.  相似文献   

14.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

15.
A novel open‐tubular CEC column coated with chitosan‐graft‐(β‐CD) (CDCS) was prepared using sol‐gel technique. In the sol‐gel approach, owing to the 3D network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55 000~163 000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol‐gel‐derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol‐gel‐coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS‐bonded capillary column.  相似文献   

16.
A facile strong inorganic acid‐initiated methacrylate polymerization strategy was developed for fabricating monolithic columns at room temperature. The prepared monoliths were characterized by FTIR spectrometry, mercury intrusion porosimeter and SEM, while their performance was evaluated by CEC for the separation of various types of compounds including alkyl benzenes, polycyclic aromatic hydrocarbons, nonsteroidal anti‐inflammatory drugs, anilines, and nitrophenol isomers. The column‐to‐column and batch‐to‐batch reproducibility for the prepared monoliths in terms of the RSD of EOF flow velocity, retention factor, and the minimum plate height of naphthalene ranged from 3.4 to 12.4%. The fabricated monoliths gave excellent performance for the separation of the test neutral compounds with the theoretical plates of 170 000–232 000 plates per meter for thiourea, and 77 400–112 300 plates per meter for naphthalene. The proposed strong inorganic acid‐initiated methacrylate polymerization strategy is a promising alternative for fabricating organic polymer‐based monoliths.  相似文献   

17.
A novel construction strategy of monolithic capillary column for selectively enriching perfluorinated persistent organic pollutants was proposed. The organic–inorganic hybrid fluorous monolithic capillary column was synthesized by a “one‐pot” approach via the polycondensation of γ‐methacryloxypropyltrimethoxy‐silane, then in situ copolymerization of 1H,1H,7H‐dodecafluoroheptyl methacrylate and vinyl group on the precondensed siloxanes. The obtained monolithic columns were systematically characterized. The results demonstrated that the optimal column possessed good mechanical stability and high permeability. The adsorption capacities of the optimized monolithic column for perfluorooctanoic acid and perfluorooctane sulfonate were 0.257 and 0.513 μg/mg, respectively. Adsorption capacities of the monoliths were proved to increasing with increasing the amounts of fluorinated monomers in the fluorous monoliths. Sodium 1‐octanesulfonate, as a comparison compound, was hardly adsorbed on the fluorous monolith. In addition, the trace amounts of perfluorooctanoic acid and perfluorooctane sulfonate in water samples can be successfully concentrated about 160 times to their original concentrations by this monolithic column. These results demonstrated that the capacity and selectivity of the affinity fluorous column is high and can be applied to the selective enrichment for the perfluorinated persistent organic pollutants from environmental samples.  相似文献   

18.
A novel terminal‐vinyl liquid crystal crown ether (2‐[4‐(3‐undeceny‐1‐yloxy)‐phenyl]‐2‐[4′‐(4′‐carboxybenzo‐15‐crown‐5)‐phenyl] propane) (LCCE) was synthesized and used to modify hybrid silica‐based monolithic column possessing vinyl ligands for CEC. The monolithic silica matrix containing vinyl functionalities was prepared by in situ co‐condensation of tetramethoxysilane and vinyl‐trimethoxysilane via sol–gel process and chemically modified with LCCE by free radical polymerization procedure using α,α'‐azobisisobutyronitrile as an initiator. Morphology of the monolithic column was examined by SEM and mercury porosimetry and the successful incorporation of terminal‐vinyl LCCE to the vinyl‐hybrid monolith was characterized by infrared spectra. Polycyclic aromatic hydrocarbons, benzenediols, carbamate pesticides and steroids, were successfully separated on the column. The separations were dominated hydrogen bonding supplied by crown ether and hydrophobic interaction offered by the liquid crystal. The effect of ACN concentration on separation performance was studied and the result indicated that RP retention mechanism played an important role. Reproducibilities of migration times for the six selected polycyclic aromatic hydrocarbons were reasonable, with relative standard deviation less than 3.50% for five consecutive within‐column runs and were 8.38–9.11% for column‐to‐column measurements of three columns.  相似文献   

19.
A chiral capillary monolithic column for enantiomer separation in capillary electrochromatography was prepared by coating cellulose tris(3,5‐dimethylphenylcarbamate) on porous glycidyl methacrylate‐co‐ethylene dimethacrylate monolith in capillary format grafted with chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride. The surface modification of the monolith by the photografting of [2(methacryloyloxy)ethyl] trimethylammonium chloride monomer as well as the coating conditions of cellulose tris(3,5‐dimethylphenylcarbamate) onto the grafted monolithic scaffold were optimized to obtain a stable and reproducible chiral stationary phase for capillary electrochromatography. The effect of organic modifier (acetonitrile) in aqueous mobile phase for the enantiomer separation by capillary electrochromatography was also investigated. Several pairs of enantiomers including acidic, neutral, and basic analytes were tested and most of them were partially or completely resolved under aqueous mobile phases. The prepared monolithic chiral stationary phases exhibited a good stability, repeatability, and column‐to‐column reproducibility, with relative standard deviations below 11% in the studied electrochromatographic parameters.  相似文献   

20.
In this study, vinyl phenyl boronic acid modified lauryl methacrylate‐based monolithic column was successfully prepared for cation exchange/hydrophobic interaction monolithic chromatography of small molecules and proteins in nano LC. The polymeric mixture consisted of lauryl methacrylate, vinyl phenyl boronic acid as cation exchanger, ethylene dimethacrylate as cross‐linker, polyethylene glycol and methanol as binary porogenic solvent, and azobisisobutyronitrile as initiator. The resulting monolith showed good permeability and mechanical stability. Different ratios of monomer and porogens were used for optimizing the properties of the column. The monolithic column performance with respect to hydrophobic and cation exchange interactions was assessed by the separation a series of alkyl benzenes and anilines, respectively. cis‐Diol‐containing compounds such as phenols were also utilized to evaluate the retention behaviors of the vinyl phenyl boronic acid modified monolithic column. The monolithic column showed cation exchange interactions in the separation of aniline compounds. Theoretical plate number up to 52 000 plates/m was successfully achieved. The prepared monolith was further applied to the proteins with different acetonitrile content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号