首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[K(crypt‐222)]+ ( 1 ) and [K(crypt‐222)]+ ( 3 ) are isostructural, displaying nearly identical unit cell parameters. The two structures are similar to the extent that the previously reported [K(crypt‐222)]+ model can be refined against the new data for [K(crypt‐222)]+ , with extra electron density being observed from the fourth fluorine atom of the . In agreement with experimental observations, theoretical calculations suggest that deprotonated [K(crypt‐222)]+ is highly unstable even at as low as 195 K. The previously considered 1:1 CHF 3 clathrate of deprotonated [K(crypt‐222)]+ (crystallographically indistinguishable from 1 ) is ruled out on the basis of all available data.  相似文献   

2.
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F and → + F were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The first rhodium(I)‐catalyzed enantioselective intermolecular C –H activation of various saturated aza‐heterocycles including tetrahydroquinolines, piperidines, piperazines, azetidines, pyrrolidines, and azepanes is presented. The combination of a rhodium(I) precatalyst and a chiral monodentate phosphonite ligand is shown to be a powerful catalytic system to access a variety of important enantio‐enriched heterocycles from simple starting materials. Notably, the C –H activation of tetrahydroquinolines is especially challenging due to the adjacent C −H bond. This redox‐neutral methodology provides a new synthetic route to α‐N‐arylated heterocycles with high chemoselectivity and enantioselectivity up to 97 % ee.  相似文献   

4.
The electronic structure of several many‐electron atoms, confined within a penetrable spherical box, was studied using the Hartree–Fock (HF) method, coupling the Roothaan's approach with a new basis set to solve the corresponding one‐electron equations. The resulting HF wave‐function was employed to evaluate the Shannon entropy, , in configuration space. Confinements imposed by impenetrable walls induce decrements on when the confinement radius, Rc, is reduced and the electron‐density is localized. For confinements commanded by penetrable walls, exhibits an entirely different behavior, because when an atom starts to be confined, delivers values less than those observed for the free system, in the same way that the results presented by impenetrable walls. However, from a confinement radius, shows increments, and precisely in these regions, the spatial restrictions spread to the electron density. Thus, from results presented in this work, the Shannon entropy can be used as a tool to measure the electron density delocalization for many‐electron atoms, as the hydrogen atom confined in similar conditions.  相似文献   

5.
Algorithms to build the basis and matrix representation to obtain the Kramers configuration space functions (KCSFs) via diagonalization will be formally generalized to an arbitrary number of unpaired (open shell) fermions. Effective build up of the matrix representation will be outlined (including threading and graphical processing unit parallelism) to subsequently obtain the KCSFs via calling external/numerical library routines for diagonalization. The effective build up of the matrix representation relays on a binary tree search algorithm to allow evaluation the action on a given basis vector. The binary tree search avoids the treatment of zero matrix elements which leads to an exponential acceleration. The implementation ( basis creation, matrix representation, and matrix diagonalization) will be done in an all in core and all at once manner, hence the available core memory sets the physical limits in practical applications. Memory limitations, sparsity of the matrix, general case of n fermions in m spinors, and the application of KCSFs will be put into further perspective.  相似文献   

6.
7.
Energy eigenvalues of nonautoionizing doubly excited states originating from 2pnf ( ) configuration of two‐electron atoms have been calculated by expanding the basis set in explicitly correlated Hylleraas coordinates under the framework of Ritz variational method. A detailed discussion on the evaluation of correlated basis integrals is given. The energy eigenvalues of a number of these doubly excited states are being reported for the first time especially for the high lying states. The effective quantum numbers ( ) for the states mentioned above have been calculated by using the theory of quantum defect.  相似文献   

8.
A new series of divalent boron‐rare gas cations (Rg = He ∼ Rn, n = 1–4) have been predicted theoretically at the B3LYP, MP2, and CCSD(T) levels to present the structures, stability, charge distributions, bond natures, and aromaticity. The Rg B bond energies are quite large for heavy rare gases and increase with the size of the Rg atom. Because of steric hindrance new Rg atoms introduced to the B4 ring will weaken the Rg B bond. Thus in the Rg B bond has the largest binding energy 90–100 kcal/mol. p‐ has a slightly shorter Rg B bond length and a larger bond energy than o‐ . NBO and AIM analyses indicate that for the heavy Rg atoms Ar ∼ Rn the B Rg bonds have character of typical covalent bonds. The energy decomposition analysis shows that the σ‐donation from rare gases to the boron ring is the major contribution to the Rg B bonding. Adaptive natural density partitioning and nuclear‐independent chemical shift analyses suggest that both and have obvious aromaticity.  相似文献   

9.
A full dimensional time‐dependent quantum wavepacket approach is used to study the photodissociation dynamics of nitrous oxide for the X → 2 bound–bound transition based on new highly accurate potential energy and transition dipole moment surfaces. The computed 2 absorption spectra at room temperature are characterized by sharp vibrational structures that contribute slightly to the diffuse vibrational structures around the maximum peak at 180 nm of the first ultraviolet absorption band (from the contribution of 2 , 1 , and 2 states) of N2O. Transitions from different initial rovibrational states reveal that the sharp structures arise mainly from N2? O bending vibrations, whereas, at higher temperatures, the N2? O and N? NO stretching vibrations are responsible for enhancing the intensity of the structures. At absorption wavelengths 166 nm and 179 nm, vibrational quantum state distributions of N2 product fragments decrease monotonically with increasing vibrational quantum number v = 0, 1, 2. At 166 nm, rotational quantum state distributions of N2 at fixed v = 0 and v = 1 display multimodal profiles with maximum peaks at j = 77 and j = 75, respectively, whereas, the distributions at the 179 nm absorption wavelength display bimodal profiles with maximum peaks at j = 73 and j = 71, respectively. Accordingly, the presence of rotationally hot N2 from previous experimental and theoretical works in the first band strongly implies a significant influence of the 2 state in determining the final dissociation pathway of N2 + O. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Reactivity-structure correlations for anisole and eleven of its substituted derivatives established from bromination rate constants in liquid SO2, unlike observations in water, show the reaction to be highly sensitive to substituent effects, (ρ = ?7.1; ρ = ?10.51). This result is ascribed to the solvation of the methoxy group which decreases the conjugation of para-substituted (ρ = ?9.70) compared to that of ortho-substituted derivatives (ρ = ?8.86). The highly solvated transition state lies far from reactants on the reaction coordinate and the positive charge developed in this state is nearly unity.  相似文献   

11.
We describe a photochemical system for the generation of hydrogen by water reduction under visible light or sunlight irradiation of aqueous solutions containing the following components: a photosensitizer, the Ru (bipy) complex, for visible light absorption; a relay species, the Rh (bipy) complex, which mediates water reduction by intermediate storage of electrons via a reduced state; an electron donor, triethanolamine (TEOA) which provides the electrons for the reduction process and a redox catalyst, colloïdal platinum, which facilitates hydrogen formation. The conditions for efficient hydrogen production and the influence of the concentration of the components have been investigated; the metal complexes act as catalysts with high turnover numbers; excess bipyridine facilitates the reaction. The process contains two catalytic cycles: a ruthenium cycle and a rhodium cycle. The Ru cycle involves oxidative quenching of the *Ru(bipy) excited state by Rh(bipy) forming Ru(bipy) which is converted back to Ru(bipy) by oxidation of the electron donor TEOA, which is thus consumed. The Rh cycle comprises a complicated set of transformations of the initial Rh(bipy) complex. The reduced rhodium complex formed in the quenching process undergoes a series of transformations involving the Rh(bipy) complex and hydridorhodium-bipyridine species, from which hydrogen is generated by reaction with the protons of water. In view of the storage of two electrons in the reduced rhodium species, the process is formally a dielectronic water reduction. The properties and eventual participation of [Rh(III)(bipy)2LL′]n+(L,L′ = H2O, OH?) species are investigated. It is concluded that at neutral pH in presence of excess bipyridine, the cycle involving regeneration of the Rh(bipy) complex is predominant. A number of experiments have been performed with modified systems. Hydrogen evolution is observed with other photosensitizers (like proflavin), other relay species (like Rh(dimethylbipy) or Co(II)-bipyridine complexes), other donor species, or in absence of the platinum catalyst. It also occurs in absence of photosensitizer by sunlight of UV. irradiation of Rh(bipy) or by visible light irradiation of iridium (III)-bibyridine complexes. These systems deserve further investigations. The present photochemical hydrogen generating system represents the reductive component of a complete water splitting process. Its role in solar energy conversion and in photochemical fuel production is discussed.  相似文献   

12.
A density functional theory study is performed to predict the structures and stability of carbon monoxide (CO) bound (E = C, Si, Ge, Sn, Pb; X = H, F, Cl, Br, I) complexes. The possibility of bonding through both C‐ and O‐sides of CO is considered. Thermochemical analysis reveals that all the dissociation processes producing CO and are endothermic in nature whereas most of the dissociation reactions are endergonic in nature at room temperature. The nature of bonding in E? C/O bonds is analyzed via Wiberg bond index, natural population analysis, electron density, and energy decomposition analyses in conjunction with natural orbitals for chemical valence scheme. In comparison to C? O stretching frequency ( ) in free CO, while a red shift is noted in O‐side binding, the C‐side binding results in a blue shift in . The relative change in values in CO bound complexes on changing either E or X is scrutinized and possible explanation is provided in terms of polarization in the σ‐ and π‐orbitals and the relative strength of C→E or O→E σ‐donation and E→C or E→O π‐back‐donation. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
The HO2 yield in the reaction of peroxy radicals with OH radicals has been determined experimentally at 50 Torr helium by measuring simultaneously OH and HO2 concentration time profiles, following the photolysis of XeF2 in the presence of different hydrocarbons and O2. The following yields have been obtained:  = (0.90 ± 0.1),  = (0.75 ± 0.15),  = (0.41 ± 0.08), and  = (0.15 ± 0.03). The clear decrease in HO2 yield with increasing size of the alkyl moiety can be explained by an increased stabilization of the trioxide adduct, ROOOH. This has been confirmed by ab initio and Rice–Ramsperger–Kassel–Marcus master equation calculations. Extrapolation of the experimental results to atmospheric conditions shows that the stabilized adduct, ROOOH, is the nearly exclusive product of the reaction between OH radicals and peroxy radicals containing more than three C‐atoms. The fate and possible impact of these species is completely unexplored so far.  相似文献   

14.
Numerous types of quantum chemical calculations and protocols have been successfully applied to computing of small, uncomplicated organic molecules. Here, we argue for the need to shift attention to more challenging molecules that are marked by an interplay of complicating factors such as conformational, tautomeric, steric, and other effects. The challenge is not in choosing the right quantum chemical method and solvation model but in combining the existing methods to simultaneously and accurately describe the breadth of chemical and physical phenomena that give rise to the experimentally observed . The complexity of the phenomena that must be considered begs for the need for a greater automation of prediction workflows. We review our experience with these challenges and outline paths for future progress in the direction of tackling prediction of complex organic molecules.  相似文献   

15.
The accurate ground‐state potential energy surface of germanium dicarbide, GeC2, has been determined from ab initio calculations using the coupled‐cluster approach. The core–electron correlation, higher‐order valence‐electron correlation, and scalar relativistic effects were taken into account. The potential energy surface of GeC2 was shown to be extraordinarily flat near the T‐shaped equilibrium configuration. The potential energy barrier to the linear CCGe configuration was predicted to be 1218 cm−1. The vibration–rotation energy levels of some GeC2 isotopologues were calculated using a variational method. The vibrational bending mode ν3 was found to be highly anharmonic, with the fundamental wavenumber being only 58 cm−1. Vibrational progressions due to this mode were predicted for the , , and states of GeC2. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
Hyperbranched polymer formation during step polymerization of AB2 type monomer with equal reactivity of two B's is investigated theoretically, focusing the attention to the degree of branching (DB) and the mean square radius of gyration for the unperturbed chains, . It is found that the DB‐value at large degree of polymerization (P) limit, = 0.5 is unchanged during the whole course of polymerization. The average value of having the same P is invariant throughout the polymerization. The universal curve between and P agrees perfectly with that for the self‐condensing vinyl polymerization (SCVP), another method to synthesize hyperbranched polymers, when the reactivity ratio for SCVP, rSCVP, is 2.589 that gives = 0.5. The power law, is found for large values of P.

  相似文献   


17.
Trifluoropropylmethylsiloxane–phenylmethylsiloxane gradient copolysiloxanes were synthesized by anionic and cationic ring‐opening polymerization (ROP) of 1,3,5‐tris(trifluoropropylmethyl)cyclotrisiloxane ( ) and phenylmethylcyclotrisiloxane ( ). The analysis of reactivity ratios revealed that the reactivity of toward anionic ROP was higher than that of ; however, exhibited lower reactivity compared with during the cationic ROP. AB and BAB type gradient copolymers were obtained because of a difference in the reactivity of the monomers. The microstructure of copolymers was characterized by 29Si NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Furthermore, the mechanism for kinetics inverse of copolymerization was proposed based on the results of the optimized molecular configuration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 835–843  相似文献   

18.
The stabilities of the Mn2+-, Co2+-, Ni2+-, Cu2+- and Zn2+-complexes with 2-(carboxymethyl)glutaric acid ( 2 ) and cis,cis-1,3,5-cyclohexanetricarboxylic acid ( 3 ) were measured potentiometrically at 25° and I = 0.5 (KNO3). Beside the complexes ML? protonated species MLH and MLH are also formed. Their stability constants are given in Table 1. A comparison between the stabilities of 2 or 3 and those of acetate, as a model for a monocarboxylate, or succinate and glutarate, as examples for dicarboxylates, indicates that in all species only one carboxylate is strongly bound whereas the second and third ones are probably not. The observation that Δlog K1 = log K ? log K as well as Δlog K2 = log K ? log K are practically constants with values of 0.34 ± 0.05 and 0.49 ± 0.07, respectively, for both ligands and the five metal ions studied is also in line with the proposed monodentate structures of the complexes ML?, MLH and MLH.  相似文献   

19.
This study reports the spin–orbit effects on the aromaticity of the , , , , , and anionic clusters via the magnetically induced current‐density method. All‐electron density functional theory (DFT) calculations were carried out using the four‐component Dirac‐Coulomb (DC) hamiltonian, including scalar and spin–orbit relativistic effects. The magnetic index of aromaticity was calculated by numerical integration over the current flow between two atoms in the pentagonal ring. These values were compared to the spin‐free values (spin–orbit coupling switched off), in order to assess the spin–orbit effect on aromaticity. It was found that in the heavy anions, and , there is a significant influence of the spin–orbit coupling. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
Comprehensive investigations on the structural modifications of negative hydrogen ion within an impenetrable spherical domain has been performed in the framework of Ritz variational method. Electron correlation plays a major role in the formation of H ion. The Hylleraas‐type basis set expansion of wave function considered here incorporates the effect of electron correlation in an explicit manner. Energy values of and 1sn states of H ion within confined domain have been calculated. Although the singly excited states do not exist for a “free” H ion, well converged energy values of such states have been found within a wide range of confinement radius. The thermodynamic pressure felt by the ion inside the sphere is also estimated. The general trend shows successive destabilization of the excited energy levels with increase of pressure. The contribution of angular correlation in the energy values have been estimated. Evolution of and energy levels of H ion as quasi‐bound states are being reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号