首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

2.
This work about the development of yttria‐based polymeric coating using [bis(hydroxyethyl) amine] terminated polydimethylsiloxanes and yttrium trimethoxyethoxide inside the capillary. The coated capillary was utilized for online capillary microextraction and high‐performance liquid chromatography analysis. The prepared coating material was characterized using scanning electron microscopy, X‐ray photoelectron spectroscopy, energy dispersive X‐ray spectrometry, and thermogravimetric analysis. The coated capillary with polymer presented better extraction efficiency compared with the pure yttria‐based coated capillary with applicability in extreme pH environments (pH 0–pH 14). Excellent extraction towards polyaromatic hydrocarbons, aldehydes, ketones, alcohols, phenols, and amides was observed with limit of detection ranging from 0.18 to 7.35 ng/mL (S/N = 3) and reproducibility in between 0.6 and 6.8% (n = 3). Capillary‐to‐capillary extraction analysis has presented reproducibility between 4.1 and 9.9%. The analysis provided linear response for seven selected phenols in the range of 5–200 ng/mL with R2 values between 0.9971 and 0.9998. The inter‐day, intra‐day, and capillary‐to‐capillary reproducibility for phenols was also <10%. Real sample analysis by spiking 5, 50, and 200 ng/mL of phenols in wastewater and pool‐water produced recovery between 84.7 and 94.3% and reproducibility within 7.6% (n = 3).  相似文献   

3.
A simple, selective, and accurate ultra‐high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol‐based sample by solid‐phase extraction, and further baseline separated on a reversed‐phase/cation‐exchange mixed‐mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High‐resolution quadrupole time‐of‐flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N′‐bis[3‐(dimethylamino)propyl]urea, N‐[2‐(2‐dimethylaminoethoxy)ethyl]‐N‐methyl‐1,3‐propanediamine, and N,N,N′,N′‐tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20–5.0 or 0.1–2.0 μg/mL with the correlation coefficients (R2) ranging from 0.986 to 0.997. Method recovery ranged within 81–105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0–6.2%. The limits of detection were in the range of 0.007–0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively.  相似文献   

4.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

5.
In this work, an open‐tubular capillary liquid‐phase column was prepared by modifying chain polymer on the inner surface of capillary and chemical bonding of metal organic frameworks, NH2‐UiO‐66, to the brushes of chain polymer (poly(glycidyl methacrylate)). Besides advantages of facial preparation and good permeability, the chain polymer effectively increases the modification amount of NH2‐UiO‐66 nanoparticles to increase the phase ratio of open‐tubular capillary column and enhance the interactions with analytes. The results of scanning electron microscope energy‐dispersive X‐ray spectra indicated that NH2‐UiO‐66 nanoparticles were successfully bonded to the chain polymer. Because of the hydrophobic interaction and hydrogen bonding interaction between the analytes and the ligand of NH2‐UiO‐66, different analytes were well separated on the NH2‐UiO‐66‐modified poly(glycidyl methacrylate) capillary (1.12 m × 25 μm id × 365 μm od) with the high absolute column efficiency reaching 121 477 plates, benefiting from an open‐tubular column and low mass transfer resistance provided by polymer brush and metal–organic framework crystal. The relative standard deviations of the retention time for run‐to‐run, day‐to‐day, and column‐to‐column (= 3) runs are below 4.28%, exhibiting good repeatability. Finally, the column was successfully applied to separation of flavonoids in licorice.  相似文献   

6.
A novel open‐tubular CEC column coated with chitosan‐graft‐(β‐CD) (CDCS) was prepared using sol‐gel technique. In the sol‐gel approach, owing to the 3D network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55 000~163 000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol‐gel‐derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol‐gel‐coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS‐bonded capillary column.  相似文献   

7.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

8.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

9.
This study described an automated online method for the simultaneous determination of 8‐isoprostane, 8‐hydroxy‐2′‐deoxyguanosine, and 3‐nitro‐l ‐tyrosine in human urine. The method involves in‐tube solid‐phase microextraction using a Carboxen 1006 PLOT capillary column as an extraction device, followed by liquid chromatography with tandem mass spectrometry using a CX column and detection in the negative/positive switching ion‐mode by multiple reaction monitoring. Using their stable isotope‐labeled internal standards, each of these oxidative stress biomarkers showed good linearity from 0.02 to 2.0 ng/mL. Their detection limits (S/N = 3) were 3.4–21.5 pg/mL, and their intra‐ and inter‐day precisions (relative standard deviations) were >3.9 and 6.5% (= 5), respectively. This method was applied successfully to the analysis of urine samples, without any other pretreatment and interference peaks.  相似文献   

10.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

11.
In this study, an in‐tube solid‐phase microextraction column packed with mesoporous TiO2 nanoparticles, coupled with MALDI–TOF–MS, was applied to the selective enrichment and detection of phosphopeptides in complex biological samples. The mesoporous TiO2 nanoparticles with high specific surface areas, prepared by a sol–gel and solvothermal method, were injected into the capillary using a slurry packing method with in situ polymerized monolithic segments as frits. Compared with the traditional solid‐phase extraction method, the TiO2‐packed column with an effective length of 1 cm exhibited excellent selectivity (α‐casein/β‐casein/BSA molar ratio of 1:1:100) and sensitivity (10 fmol of a β‐casein enzymatic hydrolysis sample) for the enrichment of phosphopeptides. These performance characteristics make this system suitable for the detection of phosphorylated peptides in practical biosamples, such as nonfat milk.  相似文献   

12.
Submicron, non‐porous, chiral silica stationary phase has been prepared by the immobilization of functionalized β‐CD derivatives to isocyanate‐modified silica via chemical reaction and applied to the pressurized capillary electrochromatography (pCEC) enantio‐separation of various chiral compounds. The submicron, non‐porous, cyclodextrin‐based chiral stationary phases (sub_μm‐CSP2) exhibited excellent chiral recognition of a wide range of analytes including clenbuterol hydrochloride, mexiletine hydrochloride, chlorpheniramine maleate, esmolol hydrochloride, and metoprolol tartrate. The synthesized submicron particles were regularly spherical and uniformly non‐porous with an average diameter of around 800 nm and a mean pore size of less than 2 nm. The synthesized chiral stationary phase was packed into 10 cm × 100 μm id capillary columns. The sub_μm‐CSP2 column used in the pCEC system showed better separation of the racemates and at a higher rate compared to those used in the capillary liquid chromatography mode (cLC) system. The sub_μm‐CSP2 possessed high mechanical strength, high stereoselectivity, and long lifespan, demonstrating rapid enantio‐separation and good resolution of samples. The column provided an efficiency of up to 170 000 plates/m for n‐propylbenzene.  相似文献   

13.
A new class of 1H ‐1,2,3‐triazole‐tethered 8‐OMe ciprofloxacin (8‐OMe CPFX) isatin hybrids 5a–l was designed, synthesized and screened for their in vitro anti‐mycobacterial activities against Mycobacterium tuberculosis H37Rv and multi‐drug‐resistant tuberculosis (MDR‐TB). All targets (minimum inhibitory concentration (MIC): 0.20–8.0 μg/mL) exhibited promising inhibitory activity against MTB H37Rv and MDR‐TB. Among them, conjugate 5h (MIC: 0.20 μg/mL), was 2–16 times more potent in vitro than the references CPFX (MIC: 3.12 μg/mL), 8‐OMe CPFX (MIC: 1.56 μg/mL) and RIF (MIC: 0.39 μg/mL) against MTB H37Rv. The most potent hybrid 5l (MIC: 0.25 μg/mL) was 8–256 times more active than the three references (MIC: 2.0–64 μg/mL) against MDR‐TB. Both of them warrant further investigations.  相似文献   

14.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

15.
Eight novel 1H‐1,2,3‐triazole‐tethered ciprofloxacin (CPFX) isatin conjugates 5a – h with greater lipophilicity compared with CPFX were designed, synthesized, and evaluated for their in vitro anti‐mycobacterial activity against Mycobacterium smegmatis and Mycobacterium tuberculosis (MTB) H37Rv. The preliminary results showed that all hybrids (MIC: 12.5–100 μg/mL) exhibited considerable activity against M. smegmatis , but less active than the parent CPFX (MIC: 6.25 μg/mL) and the reference INH (MIC: 0.78 μg/mL). Against MTB H37Rv, all hybrids displayed excellent inhibitory activity with MICs ranging from 1.56 to 25 μg/mL, particularly, 5h (MIC: 1.56 μg/mL) was twofold more active CPFX (MIC: 3.12 μg/mL), warrant further investigations.  相似文献   

16.
A high‐throughput, rapid, sensitive, environmentally friendly, and economical supercritical fluid chromatography with triple quadruple mass spectrometry method was established and validated for the first time to determine a cerebral stroke treatment drug named 3‐n‐butylphthalide in dog plasma. Plasma samples were prepared by protein precipitation with methanol and the analytes were eluted on an ACQUITY UPC2TM HSS‐C18 SB column (3 × 100 mm, 1.8 μm) maintained at 50°C. The mobile phase comprised supercritical carbon dioxide/methanol (90:10, v/v) at a flow rate of 1.5 mL/min, the compensation solvent was methanol at a flow rate of 0.2 mL/min and the total run time was 1.5 min per sample. The detection was carried out on a tandem mass spectrometer with an electrospray ionization source. Calibration curves were linear over the concentration range of 1.02–1021.00 ng/mL (r2 ≥ 0.993) with the lower limit of quantification of 1.02 ng/mL. The intra‐ and inter‐day precision values were below 15% and the accuracy was from 97.90 to 103.70% at all quality control levels. The method was suitable for a pharmacokinetic study of 3‐n‐butylphthalide in beagle dogs.  相似文献   

17.
A multi‐functional separation column modified with 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane was developed for open tubular capillary electrochromatography. This functional hydrophilic triamine‐bonded open tubular column could generate both anodic and cathodic EOF. When the pH of the running buffer was below 5.3 (30% 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane, v/v), the anodic EOF was exhibited, which greatly prevented the undesired adsorptions of basic proteins on the capillary inner wall. Favorable separation of four basic proteins (viz. trypsin, ribonuclease A, lysozyme and cytochrome c) was successfully achieved at pH 3.5 of 10 mmol/L phosphate buffer. The column efficiencies of proteins were in the range from 87 000 to 110 000 plates/m, and the RSD values for migration time of four proteins were less than 1.2% (run‐to‐run, n=5). The ionic analytes were also separated efficiently in the co‐electroosmotic mode. The average efficiencies ranged from 81 000 to 190 000 plates/m for seven aromatic acids and 186 000–245 000 plates/m for four nucleoside monophosphates, respectively, and good capillary column repeatability was gained with RSD of the migration time not more than 3.0%. The triamine‐bonded open tubular capillary column is favorable to be an alternative functional medium for the further analysis of basic proteins and anionic analytes.  相似文献   

18.
A reversed‐phase high performance liquid chromatography method has been developed and validated for determination and quantitation of the natural sesquiterpene (−)‐α‐bisabolol. Furthermore the application of the method was done by characterization of chitosan milispheres and liposomes entrapping Zanthoxylum tingoassuiba essential oil, which contains appreciable amount of (−)‐α‐bisabolol. A reversed‐phase C18 column and gradient elution was used with the mobile phase composed of (A) acetonitrile–water–phosphoric acid (19:80:1) and (B) acetonitrile. The eluent was pumped at a flow rate of 0.8 mL/min with UV detection at 200 nm. In the range 0.02–0.64 mg/mL the assay showed good linearity (R2 = 0.9999) and specificity for successful identification and quantitation of (−)‐α‐bisabolol in the essential oil without interfering peaks. The method also showed good reproducibility, demonstrating inter‐day and intra‐day precision based on relative standard deviation values (up to 3.03%), accuracy (mean recovery of 100.69% ± 1.05%) and low values of detection and quantitation limits (0.0005 and 0.0016 mg/mL, respectively). The method was also robust for showing a recovery of 98.81% under a change of solvent in standard solutions. The suitability of the method was demonstrated by the successful determination of association efficiency of the (−)‐α‐bisabolol in chitosan milispheres and liposomes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a capillary electrophoresis method, developed for the detection, in human urine, of beta‐adrenergic agents and phenolalkylamines. The electrophoretic separation is achieved in less than 10 min and is based on the use of CEofix kit, for the dynamic capillary coating. The effects of accelerator buffer pH and separation voltage were investigated. The optimum buffer pH was found to be 2.5 for beta2‐agonists and 6.2 for beta‐blockers and phenoalkylamines with a separation voltage of 15 kV. Urine samples spiked with the compounds here studied were treated according to the standard procedure (SPE and evaporation to dryness) and analyzed by CE interfaced with an UV diode‐array, set at 195 and 210 nm. The quantitative validation results, obtained analyzing samples at three different concentrations, show a good precision of peak areas that do not exceed 5% for intra‐day assays and 10% for inter‐day assays. Good linearity (r2 > 0.995) was obtained within the 50–500 ng/mL concentration range. The qualitative validation data show a relative migration times (MTs) variation lower than 1%. The analytes were clearly distinguishable in urine, with LOD and LOQ in the range of 10–80 and 40–100 ng/mL, respectively.  相似文献   

20.
A simple and cost‐effective HPLC method was established for quantification of 5‐hydroxyeicosatetraenoic acid (5‐HETE) in human lung cancer tissues. 5‐HETE from 27 patients' lung cancer tissues were extracted by solid‐phase extraction and analyzed on a Waters Symmetry C18 column (4.6 × 250 mm, 5 µm) with a mobile phase consisting of methanol, 10 mm ammonium acetate, and 1 m acetic acid (70:30:0.1, v:v:v) at a flow rate of 1.0 mL/min. The UV detection wavelength was set at 240 nm. The calibration curve was linear within the concentration range from 10 to 1000 ng/mL (r2 > 0.999, n = 7), the limit of detection was 1.0 ng/mL and the limit of quantitation was 10.0 ng/mL for a 100 µL injection. The relative error (%) for intra‐day accuracy was from 93.14 to 112.50% and the RSD (%) for intra‐day precision was from 0.21 to 2.60% over the concentration range 10–1000 ng/mL. By applying this method, amounts of 5‐HETE were quantitated in human lung cancer tissues from 27 human subjects. The established HPLC method was validated to be a simple, reliable and cost‐effective procedure that can be applied to conduct translational characterization of 5‐HETE in human lung cancer tissues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号