首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
All‐polymer solar cells (all‐PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high‐performance polymer acceptors limits their power conversion efficiency (PCE) to a value lower than those of the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high‐performance polymer acceptor PZ1 by embedding an acceptor–donor–acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low band gap of 1.55 eV and high absorption coefficient (1.3×105 cm−1). The all‐PSCs with the wide‐band‐gap polymer PBDB‐T as donor and PZ1 as acceptor showed a record‐high PCE of 9.19 % for the all‐PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all‐PSCs.  相似文献   

2.
《中国化学》2017,35(11):1687-1692
An acceptor‐donor‐acceptor (A‐D‐A) three‐dimensional (3D ) small molecule acceptor (SFTTIC ), using spirobifluorene as the core unit linking with four thieno[3,2‐b ]thiophenes (TT ) and end‐capped with 2‐(3‐oxo ‐2,3‐dihydro‐1H ‐inden‐1‐ylidene)malononitrile (INCN ) was developed for solution processed organic solar cells. SFTTIC has a high absorption coefficient up to 3.12 × 105 mol−1•cm−1, good thermal stability and appropriate energy levels. The optimized power conversion efficiency (PCE ) of 5.66% and 4.65% was achieved for the devices with PBDB ‐T:SFTTIC and PTB7 ‐Th:SFTTIC , respectively.  相似文献   

3.
Two new bithiophene imide (BTI)‐based n‐type polymers were synthesized. f‐BTI2‐FT based on a fused BTI dimer showed a smaller band gap, a lower LUMO, and higher crystallinity than s‐BTI2‐FT containing a BTI dimer connected through a single bond. s‐BTI2‐FT exhibited a remarkable electron mobility of 0.82 cm2 V−1 s−1, and f‐BTI2‐FT showed a further improved mobility of 1.13 cm2 V−1 s−1 in transistors. When blended with the polymer donor PTB7‐Th, f‐BTI2‐FT‐based all‐polymer solar cells (all‐PSCs) attained a PCE of 6.85 %, the highest value for an all‐PSC not based on naphthalene (or perylene) diimide polymer acceptors. However, s‐BTI2‐FT all‐PSCs showed nearly no photovoltaic effect. The results demonstrate that f‐BTI2‐FT is one of most promising n‐type polymers and that ring fusion offers an effective approach for designing polymers with improved electrical properties.  相似文献   

4.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

5.
Herein, we report the synthesis, characterization, and field‐effect properties of two cross‐conjugated dithienylmethanone (DMO)‐based alternating polymers, namely, PDMO‐S and PDMO‐Se . Both polymers possess high thermal stability, good solubility, and broad absorption spectra. Their electrochemical properties were investigated using cyclic voltammetry, indicating that PDMO‐Se has higher HOMO/LUMO energy levels of −5.49/−3.49 eV than −5.57/−3.58 eV of PDMO‐S . The two polymers exhibited promising charge transport properties with the highest hole mobility of 0.12 cm2 V−1 s−1 for PDMO‐S and 0.025 cm2 V−1 s−1 for PDMO‐Se . AFM and 2D‐GIXRD analyses demonstrated that the PDMO‐S formed lamellar, edge‐on packing thin film with close ππ stacking. These findings suggest that cross‐conjugated polymers might be potential semiconducting materials for low‐cost and flexible organic electronics. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1012–1019  相似文献   

6.
1,4,8,9‐Naphthalene diimides (NDIs) with strong electron accepting ability and high stability are excellent building blocks for semiconductor polymers. However, 1,8‐naphthalene monoimide (NMI) with similar structure and energy levels as that of NDI has never been used to construct conjugated polymers because of synthetic difficulty. Herein, 3,6‐dibromo‐NMI (DBNMI) with bulky alkyl groups was obtained effectively in a four‐step synthesis, and three donor‐acceptor (D‐A) type conjugated polymers based on NMI were firstly prepared. These polymers have strong absorption in the range of 300–600 nm, low LUMO level of 3.68 eV, and moderate bandgaps of 2.18 eV. Space charge limiting current measurements indicate these polymers are typical electron transporting materials, and the highest electron mobility is up to 5.8 × 10−3 cm2 V−1 s−1, which is close to the star acceptor based on NDI (N2200, 5.0 × 10−3 cm2 V−1 s−1). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 276–281  相似文献   

7.
Four novel conjugated polymers ( P1‐4 ) with 9,10‐disubstituted phenanthrene (PhA) as the donor unit and 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low‐lying HOMO energy levels (below −5.3 eV), and high hole mobilities (in the range of 3.6 × 10−3 to 0.02 cm2 V−1 s−1). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1‐4 :PC71BM blends as the active layer and an alcohol‐soluble fullerene derivative (FN‐C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10‐disubstituted PhA are potential donor materials for high‐efficiency BHJ PSCs.

  相似文献   


8.
Two new side‐chain donor–acceptor (D‐A)‐based triphenylamine‐alt‐benzo[1,2‐b:4,5‐b′]dithiophene (TPA‐alt‐BDT) copolymers ( P1 and P2 ) with pendant benzothiadiazole (BT)/diketopyrrolopyrrole (DPP) in TPA unit were synthesized by Stille coupling polymerization. Their thermal, photophysical, electrochemical, blend film morphology and photovoltaic properties were investigated. Efficient bulk heterojunction polymer solar cells (PSCs) were obtained by solution process using both copolymers as donor materials and PC71BM as acceptor. The maximum power conversion efficiency (PCE) of 3.17% with a highest open‐circuit voltage (Voc) of 0.86V was observed in the P1 ‐based PSCs, while the maximum short‐circuit current (Jsc) of 10.77 mA cm?2 was exhibited in the P2 ‐based PSCs under the illumination of AM 1.5, 100 mW cm?2. The alternating binary donor units and pending acceptor groups played a significant role in tuning photovoltaic properties for this class of the side‐chain D–A‐based copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4103–4110  相似文献   

9.
A series of donor‐π‐acceptor (D‐π‐A) conjugated copolymers ( PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT ), based on benzo[1,2‐b:4,5‐c']dithiophene‐4,8‐dione (BDD) acceptor unit with benzodithiophene (BDT) or dithienosilole (DTS) as donor unit, alkylthiophene (AT) or thieno[3,2‐b]thiophene (TT) as conjugated π‐bridge, were designed and synthesized for application as donor materials in polymer solar cells (PSCs). Effects of the donor unit and π‐bridge on the optical and electrochemical properties, hole mobilities, and photovoltaic performance of the D‐π‐A copolymers were investigated. PSCs with the polymers as donor and PC70BM as acceptor exhibit an initial power conversion efficiency (PCE) of 5.46% for PBDT‐AT , 2.62% for PDTS‐AT , 0.82% for PBDT‐TT , and 2.38% for PDTS‐TT . After methanol treatment, the PCE was increased up to 5.91%, 3.06%, 1.45%, and 2.45% for PBDT‐AT, PDTS‐AT, PBDT‐TT , and PDTS‐TT , respectively, with significantly increased FF. The effects of methanol treatment on the photovoltaic performance of the PSCs can be ascribed to the increased and balanced carrier transport and the formation of better nanoscaled interpenetrating network in the active layer. The results indicate that both donor unit and π‐bridge are crucial in designing a D‐π‐A copolymer for high‐performance photovoltaic materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1929–1940  相似文献   

10.
Two copolymers having D‐A‐D‐A ( P1 ) and D‐A ( P2 ) structures with quinoxaline acceptor unit and dithienosilole donor unit were synthesized and their optical and electrochemical (both experimental and theoretical) properties were investigated. The optical properties showed that these copolymers P1 and P2 exhibit optical bandgaps of 1.54 and 1.62 eV, respectively, with broader absorption profiles extending up to 800 nm and 770 nm, respectively. The electrochemical investigation of these two copolymers indicates that they exhibit suitable highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels for efficient exciton dissociation and high open circuit voltage in the resultant polymer solar cells (PSCs). These copolymers were used as donors along with the PC71BM as acceptor for the fabrication of solution processed bulk heterojunction PSCs. The optimized P1 :PC71BM and P2 :PC71BM active layers treated with solvent vapor treatment showed overall power conversion efficiency (PCE) of 7.16% and 6.57%, respectively. The higher PCE of P1 ‐based device as compared to P2 might be attributed to higher crystallinity of P1 and good hole mobility resulting more balanced charge transport. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 376–386  相似文献   

11.
《中国化学》2018,36(5):392-398
Spirofluorene (SF) and benzo[d][1,2,3]triazole (BTA) have been considered as promising building blocks to construct n‐type photovoltaic materials. Herein, three new small molecule acceptors (SMAs) named BTA21 , BTA23 and BTA27 with the structure of A2 = A1‐D‐A1 = A2 have been designed, in which SF and BTA were used as a central unit of D and bridged acceptor unit of A1, respectively. In addition, 3‐ethylrhodanine, 2‐(3‐ethyl‐4‐ oxothiazolidin‐2‐ylidene)malononitrile and malononitrile were chosen as terminal acceptor units to modulate the properties of the final SMAs. Three SMAs show wide optical band gaps (Eg) of 2.19, 2.15 and 2.21 eV, respectively, with gradually down‐shift of the lowest unoccupied molecular orbital (LUMO) levels in the order of BTA21 , BTA23 and BTA27 depending on the electron‐withdrawing capability of terminal acceptor units. BTA21 shows great advantages with respect to donor poly(3‐hexylthiophene) (P3HT) over BTA23 and BTA27 , such as well energy‐level matching, complementary absorption and proper morphology. Concequently, P3HT: BTA21 shows the best power conversion efficiency (PCE) value of 3.28% with an open‐circuit voltage (VOC) of 1.02 V, a short‐circuit current (JSC) of 5.45 mA·cm–2 and a fill factor (FF) of 0.59. These results indicate that the terminal acceptor group end‐capped in SMAs plays a significant role in controlling their optical, electronic, and photovoltaic properties.  相似文献   

12.
The ladder‐type nonacyclic arene (bis(thieno[3,2‐b]thieno)cyclopentafluorene (BTTF)) has been designed and synthesized through fusing thienothiophenes with the fluorene core from the synthon of dimethyl 9,9‐dioctyl‐2,7‐bis(thieno[3,2‐b]thiophen‐2‐yl)fluorene‐3,6‐dicarboxylate. With BTTF as the central donor unit, a novel acceptor–donor–acceptor (A‐D‐A) type non‐fullerene small‐molecule acceptor ( BTTFIC ) was prepared with 1,1‐dicyanomethylene‐3‐indanones (IC) as the peripheral acceptor units. The energy level of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of BTTFIC locate at ?5.56 and ?3.95 eV, respectively, presenting a low optical band gap of 1.58 eV. Encouragingly, polymer solar cells based on the blends of BTTFIC with both the representative wide‐ and low‐bandgap polymer donors (PBDB‐T, 1.82 eV. PTB7‐Th, 1.58 eV) offer power conversion efficiencies over 8 % (8.78±0.18 % for PBDB‐T: BTTFIC and 8.18±0.29 % for PTB7‐Th: BTTFIC ). These results highlight the advantage of ladder‐type BTTF on the preparation of nonfullerene acceptors with extended conjugated backbones.  相似文献   

13.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

14.
High‐molecular‐weight conjugated polymer HD‐PDFC‐DTBT with N‐(2‐hexyldecyl)‐3,6‐difluorocarbazole as the donor unit, 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit, and thiophene as the spacer is synthesized by Suzuki polycondensation. HD‐PDFC‐DTBT shows a large bandgap of 1.96 eV and a high hole mobility of 0.16 cm2 V−1 s−1. HD‐PDFC‐DTBT:PC71BM‐based inverted polymer solar cells (PSCs) give a power conversion efficiency (PCE) of 7.39% with a Voc of 0.93 V, a Jsc of 14.11 mA cm−2, and an FF of 0.56.

  相似文献   


15.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

16.
A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105 cm−1, a high LUMO level of −3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.  相似文献   

17.
In order to improve the solution processability of 4,7‐bis(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT)‐based polymers, novel donor–acceptor polymer PTOBDTDTBT containing DTBT and benzo[1,2‐b:4,5‐b′]dithiophene (BDT) with conjugated side chain is designed and synthesized with narrow band gap 1.67 eV and low lying HOMO energy level −5.4 eV. The blend film of PTOBDTDTBT and PC71BM exhibits uniform and smooth film with root‐mean‐square (RMS) surface roughness 1.15 nm because of the excellent solubility of PTOBDTDTBT when six octyloxy side chains are introduced. The hole mobility of the blend film is measured to be 4.4 × 10−5 cm2 V−1s−1 by the space‐charge‐limited current (SCLC) model. The optimized polymer solar cells (PSCs) based on PTOBDTDTBT /PC71BM exhibits an improved PCE of 6.21% with Voc = 0.80 V, Jsc = 11.94 mA cm−2 and FF = 65.10%, one of the highest PCE in DTBT containing polymers.

  相似文献   


18.
Designing low band‐gap‐conjugated polymers coupled with low HOMO levels attracts great attention in the field of polymer solar cells (PSCs). By using donor–acceptor (D‐A) copolymerization strategy, we designed and synthesized a series of low band‐gap copolymers with deep HOMO levels via introducing an isoindigo (IID) acceptor unit in the copolymers with the donor unit of fluorene (F) (PIID‐F), carbazole (Cz) (PIID‐Cz), thiophene (Th) (PIID‐Th), dithiophene (DTh) (PIID‐DTh), or dithienosilole (DTS) (PIID‐DTS). The HOMO level of the copolymers, measured by electrochemical cyclic voltammetry, varies from ?5.3 eV to ?5.8 eV, depending on different donor units in the copolymers. However, the LUMO levels of all the copolymers are fixed at about ?3.6 eV, which is mainly determined by IID acceptor unit due to its strong electron‐withdrawing ability. The new results will provide an effect help in designing IID based molecular structures. Among the copolymers, PIID‐DTS has a low band gap of 1.58 eV and possesses a low‐lying HOMO energy level of ?5.33 eV. The PSCs based on PIID‐DTS as donor and PC70BM as acceptor exhibited a high open‐circuit voltage (Voc) of 0.93 V and a primary power conversion efficiency of 2.45%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3477–3485  相似文献   

19.
A double B←N bridged bipyridyl (BNBP) is a novel electron‐deficient building block for polymer electron acceptors in all‐polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low‐lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P‐BNBP‐T) exhibits high electron mobility, low‐lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all‐polymer solar cell (all‐PSC) devices with P‐BNBP‐T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38 %, which is among the highest values of all‐PSCs with PTB7 as the electron donor.  相似文献   

20.
A new donor‐acceptor copolymer, containing benzodithiophene (BDT) and methyl thiophene‐3‐carboxylate (3MT) units, is designed and synthesized for polymer solar cells (PSCs). The 3MT unit is used as an electron acceptor unit in this copolymer to provide a lower highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open‐circuit voltage (VOC). The resulting bulk heterojunction PSC made of the copolymer and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits a power conversion efficiency (PCE) up to 4.52%, a short circuit current (JSC) of 10.5 mA·cm‐2, and a VOC of 0.86 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号