首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
An ultra‐performance LC TOF MS method for quantitative analysis of cortisol and 6β‐hydroxycortisol in urine was developed. The method was used for determination of the ratio between 6β‐hydroxycortisol and cortisol in urine received from autopsy cases and living persons as a measure of cytochrome P450 3A enzyme activity. Urine samples (0.25 mL) were extracted with an in‐house developed fully automated 96‐well SPE system. The compounds were quantified using a Waters ACQUITY UPLC system coupled to a Waters SYNAPT G2. The MS sensitivity was optimized by using negative ionization in sensitivity mode (resolution >10 000 full‐width at half‐maximum), and further optimized by using the enhanced duty cycle around the 410 m/z. ESCi (simultaneous electrospray and atmospheric pressure chemical ionization) mode was used to compensate for the matrix effects of postmortem urine. Finally, the SYNAPT G2 was tested as a quantitative instrument. The developed method has a measurement range from 2.5–300 ng/mL for cortisol to 10–1200 ng/mL for 6β‐hydroxycortisol. Mean overall process efficiencies were 29.4 and 23.0% for cortisol and 6β‐hydroxycortisol, respectively. In 20 forensic reference cases, the range of the 6β‐hydroxycortisol/cortisol ratio was 0.29–14.2 with a median of 3.04.  相似文献   

2.
A rapid and sensitive LC‐electrospray ionization‐MS method was developed for determining vinorelbine in rat plasma. A 100 µL plasma sample was treated using a protein precipitation procedure and was chromatographed within 4 min using an Inertsil ODS‐3 C18 (2.1 × 50 mm, 5 µm) column. The selected ion monitoring ions [M + H]+ were m/z 779 and m/z 811 for vinorelbine and vinblastine (internal standard), respectively. The method validation showed that the calibration curve for vinorelbine was linear over a concentration range of 1–1000 ng/mL with lower limit of quantification at 1 ng/mL. The method has been successfully applied to pharmacokinetics in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, novel and reliable UHPLC‐MS/MS method was developed and validated for simultaneous determination of cyclophosphamide (CP) and its dechloroethylated metabolite, 2‐dechloroethylcyclosphamide (2‐DCECP) in human plasma. The plasma samples were conducted by protein precipitation with 3‐fold acetonitrile, containing 0.1% formic acid. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode, using tinidazole as internal standard (IS). Chromatographic separation was performed on an Agilent poroshell 120 SB‐C18 column (2.1 × 75 mm, 2.7 µm) using gradient elution of acetonitrile and 0.1% formic acid at a flow rate of 0.5 mL/min, the total run time was 2.5 min. The limit of quantification (LOQ) was 20 ng/mL for both CP and 2‐DCECP. Accuracies and precisions were <15% at LOQ and below 10% at quality control concentration levels. This UHPLC‐MS/MS method was successfully applied for the estimation of CP and 2‐DCECP in human plasma, which was also useful for clinical toxicology studies and therapeutic drug monitoring of CP. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The chemotherapeutic drug 5‐fluorouracil (5‐FU) is widely used for treating solid tumors. Response to 5‐FU treatment is variable with 10–30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6‐dihydrouracil (UH2), and analogously, 5‐FU into 5‐fluoro‐5,6‐dihydrouracil (5‐FUH2). Combined quantification of U and UH2 with 5‐FU and 5‐FUH2 may provide a pre‐therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography–tandem mass spectrometry assay for simultaneous quantification of U, UH2, 5‐FU and 5‐FUH2 in human plasma. Samples were prepared by liquid–liquid extraction with 10:1 ethyl acetate‐2‐propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC18 column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01–10 μm for U, 0.1–10 μm for UH2, 0.1–75 μm for 5‐FU and 0.75–75 μm for 5‐FUH2, covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5‐FU‐treated colorectal cancer patients. The present method merges the analysis of 5‐FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5‐FU‐based chemotherapy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A LC‐MS/MS method for the determination of a hydrophilic paclitaxel derivative 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma was developed to evaluate the pharmacokinetics of 7‐xylosyl‐10‐deacetylpaclitaxel in the rats. 7‐Xylosyl‐10‐deacetylpaclitaxel and docetaxel (IS for 7‐xylosyl‐10‐deacetylpaclitaxel) were extracted from rat plasma with acetic ether and analyzed on a Hypersil C18 column (4.6 × 150 mm i.d., particle size 5 µm) with the mobile phase of ACN/0.05% formic acid (50:50, v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring mode. The standard curves for 7‐xylosyl‐10‐deacetylpaclitaxel in plasma were linear (>0.999) over the concentration range of 2.0–1000 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2.0 ng/mL using 50 µL plasma), precision (CV ≤ 10.1%), accuracy (relative error ?12.4 to 12.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma after intravenous administration of 7‐xylosyl‐10‐deacetylpaclitaxel to female Wistar rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The major metabolite of duloxetine is a glucuronide conjugate of 4‐hydroxy duloxetine (4‐HD). However, interestingly, there have been no reports determining concentrations of 4‐HD and no fully validated method has been established for measuring duloxetine and 4‐HD in rat plasma. We developed a method for the simultaneous quantification of duloxetine and its metabolite in rat plasma using high‐performance liquid chromatography tandem mass spectrometry. Duloxetine and 4‐HD were analyzed on a reverse‐phase C18 analytical column after protein precipitation of the plasma sample with methanol, using carbamazepine as an internal standard. The isocratic mobile phase of 5 mm ammonium acetate–methanol (4:6, v/v) was eluted at 0.4 mL/min. Quantification was performed on a triple‐quadrupole mass spectrometer using electrospray ionization, and the ion transition monitored in selective reaction monitoring mode. The coefficient of variation for assay precision was <18.0%, and the accuracy was 84.0–118.0%. This method was successfully used to measure the concentrations of duloxetine and its metabolite in plasma following the oral administration of a single 40 mg/kg dose in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive, rapid and selective ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed for the determination and pharmacokinetic study of domperidone in human plasma. Diphenhydramine was used as the internal standard. Plasma sample pretreatment involved a one‐step liquid–liquid extraction with a mixture of diethyl ether–dichloromethane (3:2, v/v). The analysis was carried out on an Acquity UPLCTM BEH C18 column. The mobile phase consisted of methanol–water containing 10 mmol/L ammonium acetate and 0.5% (v/v) formic acid (60:40, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionizationsource with positive mode. Each plasma sample was chromatographed within 2.1 min. The standard curves for domperidone were linear (r2 ≥ 0.99) over the concentration range of 0.030–31.5 ng/mL with a lower limit of quantification of 0.030 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 13% and accuracy (relative error) was from ?7.6 to 1.2% at three quality control levels. The method herein described was superior to previous methods and was successfully applied to the pharmacokinetic study of domperidone in healthy Chinese volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid and highly sensitive method by LC‐MS/MS was developed and validated for the quantification of an antimalarial candidate (LAFIS10) in rat plasma using dexamethasone as internal standard (IS). The chromatographic separation was performed with a Poroshell 120 EC‐C18 column. The mobile phase consisted of water (A) and acetonitrile (B), both containing 10 m m of ammonium formate and 0.1% formic acid, delivered in the form of elution gradient. The LAFIS10 was monitored using an electrospray ionization interface operating in the positive mode in multiple reaction monitoring mode, monitoring the transitions 681.47 → 538.2 for LAFIS10 and 393.20 → 355.30 for the IS. The flow rate was 500 μL/min. The column temperature was kept at 40 °C and the injection volume was 2 μL. The lower limit of quantification was of 10 ng/mL and linearity between 10 and 1000 ng/mL was observed, with an R2 > 0.99. The accuracy of the method was >90%. The relative standard deviations intra‐ and interday were <8.80 and <6.37%, respectively. The method showed sensitivity, linearity, precision, accuracy and selectivity required to quantify LAFIS 10 in preclinical pharmacokinetic studies according to criteria established by the US Food and Drug Administration and European Medicines Agency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous quantification of the five main bioactive components, calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin in rat plasma after oral administration of Shenqi Wuwei chewable tablets. Plasma samples were extracted using solid‐phase extraction separated on a CEC18 column and detected by MS with an electrospray ionization interface in multiple‐reaction monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r > 0.995. The method had a lower limit of quantitation of 0.1, 0.02, 0.1, 1 and 0.1 ng/mL for calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin, respectively. Intra‐ and inter‐day precisions (relative standard deviation) for all analytes ranged from 0.97 to 7.63% and from 3.45 to 10.89%, respectively. This method was successfully applied to the pharmacokinetic study of the five compounds in rats after oral administration of Shenqi Wuwei chewable tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This study is the first to detail the development and validation of a rapid, sensitive and specific LC‐ESI‐MS/MS method for the determination of eriodictyol‐8‐C‐β‐d ‐glucopyranoside (EG) in rat plasma. A simple protein precipitation method was used for plasma sample preparation. Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm) using a step gradient program with the mobile phase of 0.1% formic acid aqueous solution and acetonitrile with 0.1% formic acid. EG and the internal standard (IS) were detected using an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. This method demonstrated good linearity and did not show any endogenous interference with the active compound and IS peaks. The lower limit of quantification of EG was 0.20 ng/mL in 50 μL rat plasma. The average recoveries of EG and IS from rat plasma were both above 80%. The inter‐day precisions (relative standard deviation) of EG determined over 5 days were all within 15%. The present method was successfully applied to a quantification and bioavailability study of EG in rats after intravenous and oral administration. The oral absolute bioavailability of EG in rats was estimated to be 7.71 ± 1.52%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
An accelerated solvent extraction coupled with gas chromatography‐tandem mass spectrometry (ASE‐GC‐MS/MS) method for detecting dinitolmide residue and its metabolite (3‐amino‐2‐methyl‐5‐nitrobenzamide, 3‐ANOT) in eggs was developed and optimized. The samples were extracted using ASE with acetonitrile as the extractant and were purified by passage through a neutral alumina solid‐phase extraction column. Then, the samples were analyzed using the GC‐MS/MS method. The optimized method parameters were validated according to the requirements set forth by the European Union and the Food and Drug Administration. The average recoveries of dinitolmide and 3‐ANOT from eggs (egg white, egg yolk, and whole egg) at the limit of quantification (LOQ), 0.5 maximum residue limit (MRL), 1 MRL, and 2 MRL were 82.74% to 87.49%, the relative standard deviations (RSDs) were less than 4.63%, and the intra‐day RSDs and the inter‐day RSDs were 2.96% to 5.21% and 3.94% to 6.34%, respectively. The limits of detection and the LOQ were 0.8 to 2.8 μg/kg and 3.0 to 10.0 μg/kg, respectively. The decision limits (CCα) were 3001.69 to 3006.48 μg/kg, and the detection capabilities (CCβ) were 3001.74 to 3005.22 μg/kg. Finally, the new method was successfully applied to the quantitative determination of dinitolmide and 3‐ANOT in 50 commercial eggs from local supermarkets.  相似文献   

12.
New research has indicated that Gastrodiae Rhizome (GR) has potential anti‐diabetic and anti‐asthmatic effects in mouse models. On the basis of our previous study of the relative bioavailability of gastrodin (GAS) and parishin (PA) from extract and powder of GR, we performed further research on the tissue distribution and excretion of the two analytes. A reliable bioanalytical method for the quantification of GAS and PA in rat tissues and excretion is required. Chromatographic separation was carried out on a gradient mobile phase of acetonitrile–water with 0.1% formic acid. Calibration curves (1/x 2 weighted) offered satisfactory linearity (r 2 > 0.9835) within 100–3000 ng mL−1 for GAS and (r 2 > 0.9862) within 10–1000 ng mL−1 for PA. The relative standard deviations of the intra‐day and inter‐day precision were all <14.98%, whilst the relative errors of the intra‐day and inter‐day accuracy were all within ±14.71%. The matrix effect and recovery values were satisfactory in all of the biological matrices examination. The data of relative differences in tissue distribution and excretion of GAS and PA from powder and extract of GR indicated that higher bioavailabilities for GAS and PA were obtained when a dosage of 4 g kg−1 GR powder was used.  相似文献   

13.
A specific ultra‐performance liquid chromatography tandem mass spectrometry method is described for the simultaneous determination of bupropion, metroprolol, midazolam, phenacetin, omeprazole and tolbutamide in rat plasma with diazepam as internal standard, which are the six probe drugs of the six cytochrome P450 isoforms CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9. Plasma samples were protein precipitated with acetonitrile. The chromatographic separation was achieved using a UPLC® BEH C18 column (2.1 × 100 mm, 1.7 µm). The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with gradient elution. The triple quadrupole mass spectrometric detection was operated by multiple reaction monitoring in positive electrospray ionization. The precisions were <13%, and the accuracy ranged from 93.3 to 110.4%. The extraction efficiency was >90.5%, and the matrix effects ranged from 84.3 to 114.2%. The calibration curves in plasma were linear in the range of 2–2000 ng/mL, with correlation coefficient (r2) >0.995. The method was successfully applied to pharmacokinetic studies of the six probe drugs of the six CYP450 isoforms and used to evaluate the effects of erlotinib on the activities of CYP2B6, CYP2D6, CYP3A4, CYP1A2, CYP2C19 and CYP2C9 in rats. Erlotinib may inhibit the activity of CYP2B6 and CYP3A4, and may induce CYP2C9 of rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
An accurate, rapid and effective method was established for determination of eugenol in plasma, muscle, skin, liver, kidney and gill of fish using gas chromatography–ion trap tandem mass spectrometry. Samples of muscle, skin, liver, kidney and gill were prepared using the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) procedure, and a plasma sample was prepared by a liquid–liquid extraction procedure. Eugenol was monitored in <7 min using an electron‐ionization source in MS/MS mode and quantified by an internal standard of eugenol‐d3. The limit of detection was 5.0 μg/kg, and the limit of quantification was 10.0 μg/kg. The calibration curve was linear in the range of 5–1000 μg/L (R2 = 0.9996). Intra‐ and inter‐day precisions of eugenol expressed as relative standard deviation were within 9.74%, and the accuracy exhibited a relative error ranging from −2.20 to 8.89%. The developed method was successfully used to study the elimination regularity of eugenol in mandarin fish.  相似文献   

16.
A rapid and simple LC with MS/MS method for the simultaneous determination of metoprolol and its two CYP2D6‐derived metabolites, α‐hydroxy‐ and O‐desmethylmetoprolol, in human plasma was established. Metoprolol (MET), its two metabolites, and the internal standard chlorpropamide were extracted from plasma (50 μL) using ethyl acetate. Chromatographic separation was performed on a Luna CN column with an isocratic mobile phase consisting of distilled water and methanol containing 0.1% formic acid (60:40, v/v) at a flow rate of 0.3 mL/min. The total run time was 3.0 min per sample. Mass spectrometric detection was conducted by ESI in positive ion selected‐reaction monitoring mode. The linear ranges of concentration for MET, α‐hydroxymetoprolol, and O‐desmethylmetoprolol were 2–1000, 2–500, and 2–500 ng/mL, respectively, with a lower limit of quantification of 2 ng/mL for all analytes. The coefficient of variation for the assay's precision was ≤ 13.2%, and the accuracy was 89.1–110%. All analytes were stable under various storage and handling conditions and no relevant cross‐talk and matrix effect were observed. Finally, this method was successfully applied to assess the influence of CYP2D6 genotypes on the pharmacokinetics of MET after oral administration of 100 mg to healthy Korean volunteers.  相似文献   

17.
A thalidomide analog, (4‐(1,3‐dioxo‐1,3‐dihydro‐2H‐isoindol‐2‐yl)‐N ′‐[(4‐ethoxyphenyl) methylidene] benzohydrazide), has been identified as a promising broad‐spectrum anti‐inflammatory agent in previous study. In this study, a sensitive and selective UPLC‐MS/MS assay was developed and validated for its determination in rat plasma samples. The chromatographic separation was performed on an Aquity BEH C18 column using mobile phase comprising of acetonitrile and 10 mm ammonium acetate in the ratio of 85: 15, at flow rate of 0.3 mL/min. The detection and quantification were performed in positive multiple reaction monitoring mode by parent to daughter ion transition of 414.06 ˃ 148.05 for analyte and 411.18 ˃ 191.07 for internal standard (risperidone), respectively using electrospray ionization source. The sample extraction process consisted of liquid–liquid extraction method using diethyl ether as the extracting solvent. The assay was validated by following FDA guidelines and all parameters were found to be within acceptable limits. The linearity was between 10.1 and 2500 ng/mL and the lower limit of quantification was 10.1 ng/mL. The reported results indicate that the assay could meet the requirement for analysis of this compound in amounts expected to the present in actual samples. Further, in vitro metabolic stability study was performed in rat liver microsomes by using the validated assay.  相似文献   

18.
A novel, rapid and sensitive LC‐MS/MS method for the determination of 1‐O‐Acetylbritannilactone (ABL), a sesquiterpene lactone abundant in Inula britannica, was developed and validated using heteroclitin D as internal standard. Separation was achieved on a reversed phase Hypersil Gold C18 column (50 × 4.6 mm, i.d., 3.0 µm) using isocratic elution with methanol–5 mM ammonium acetate buffer aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min. Calibration curve was linear (r > 0.99) in a concentration range of 1.60–800 ng/mL with the lower limit of quantification of 1.60 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by relative error (RE) and relative standard deviation (RSD) values, respectively, which were both less than ±15%. The validated method has been successfully applied to a pharmacokinetic study of ABL in rats. The elimination half‐lives were 0.412 ± 0.068, 0.415 ± 0.092 and 0.453 ± 0.071 h after a single intravenous administration of 0.14, 0.42, and 1.26 mg/kg ABL, respectively. The area under the plasma concentration–time curve from time zero to the last quantifiable time point and from time zero to infinity and the plasma concentrations at 2 min were linearly related to the doses tested. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and selective liquid chromatography mass spectrometry method for determination of chidamide in rat plasma was developed. After addition of linezolid as internal standard, protein precipitation by acetonitrile–methanol (9:1, v/v) was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB‐C18 (2.1 × 150 mm, 5 µm) column with acetonitrile–0.1% formic acid as mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification using target fragment ions m/z 391.5 for chidamide and m/z 338.5 for the IS. Calibration plots were linear over the range of 10–2000 ng/mL for chidamide in rat plasma. The lower limit of quantification for chidamide was 10 ng/mL. The mean recovery of chidamide in plasma was in the range of 86.6–92.1%. The coefficients of variation of intra‐day and inter‐day precision were both <12%. This method is simple and sensitive and was applied successfully in a pharmacokinetic study of chidamide to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive analytical method has been developed and validated for the quantification of L‐ergothioneine in human plasma and erythrocytes by liquid chromatography‐tandem mass spectrometry. A commercially available isotope‐labeled L‐ergothioneine‐d9 is used as the internal standard. A simple protein precipitation with acetonitrile is utilized for bio‐sample preparation prior to analysis. Chromatographic separation of L‐ergothioneine is conducted using gradient elution on Alltime C18 (150 mm × 2.1 mm, 5 µ). The run time is 6 min at a constant flow rate of 0.45 ml/min. The mass spectrometer is operated under a positive electrospray ionization condition with multiple reaction monitoring mode. The mass transitions of L‐ergothioneine and L‐ergothioneine‐d9 are m/z 230 > 127 and m/z 239 > 127, respectively. Excellent linearity [coefficient of determination (r2) ≥ 0.9998] can be achieved for L‐ergothioneine quantification at the ranges of 10 to 10 000 ng/ml, with the intra‐day and inter‐day precisions at 0.9–3.9% and 1.3–5.7%, respectively, and the accuracies for all quality control samples between 94.5 and 101.0%. This validated analytical method is suitable for pharmacokinetic monitoring of L‐ergothioneine in human and erythrocytes. Based on the determination of bio‐samples from five healthy subjects, the mean concentrations of L‐ergothioneine in plasma and erythrocytes are 107.4 ± 20.5 ng/ml and 1285.0 ± 1363.0 ng/ml, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号