首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《组合设计杂志》2018,26(1):27-47
In this paper, we almost completely solve the existence of almost resolvable cycle systems with odd cycle length. We also use almost resolvable cycle systems as well as other combinatorial structures to give some new solutions to the Hamilton–Waterloo problem.  相似文献   

2.
In this article, it is shown that there exists a 1‐rotationally resolvable 4‐cycle system of 2Kυ if and only if υ ≡ 0 (mod 4). To prove that, some special sequences of integers are utilized. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 116–125, 2002; DOI 10.1002/jcd.10006  相似文献   

3.
L. Wang  H. Cao 《Discrete Mathematics》2018,341(5):1479-1491
In this paper, we construct almost resolvable cycle systems of order 4k+1 for odd k11. This completes the proof of the existence of almost resolvable cycle systems with odd cycle length. As a by-product, some new solutions to the Hamilton–Waterloo problem are also obtained.  相似文献   

4.
Fu and Mishima [J. Combin. Des. 10 (2002), pp. 116–125] have utilized the extended Skolem sequence to prove that there exists a 1‐rotationally resolvable 4 ‐cycle system of 2 K v if and only if v 0 (mod 4 ). In this paper, the existence of a cyclically near‐resolvable 4 ‐cycle system is discussed, and it is shown that there exists a cyclically near‐resolvable 4 ‐cycle system of 2 K v if and only if v 1 (mod 4 ).  相似文献   

5.
Suppose H is a complete m-partite graph Km(n1,n2,…,nm) with vertex set V and m independent sets G1,G2,…,Gm of n1,n2,…,nm vertices respectively. Let G={G1,G2,…,Gm}. If the edges of λH can be partitioned into a set C of k-cycles, then (V,G,C) is called a k-cycle group divisible design with index λ, denoted by (k,λ)-CGDD. A (k,λ)-cycle frame is a (k,λ)-CGDD (V,G,C) in which C can be partitioned into holey 2-factors, each holey 2-factor being a partition of V?Gi for some GiG. Stinson et al. have resolved the existence of (3,λ)-cycle frames of type gu. In this paper, we show that there exists a (k,λ)-cycle frame of type gu for k∈{4,5,6} if and only if , , u≥3 when k∈{4,6}, u≥4 when k=5, and (k,λ,g,u)≠(6,1,6,3). A k-cycle system of order n whose cycle set can be partitioned into (n−1)/2 almost parallel classes and a half-parallel class is called an almost resolvable k-cycle system, denoted by k-ARCS(n). Lindner et al. have considered the general existence problem of k-ARCS(n) from the commutative quasigroup for . In this paper, we give a recursive construction by using cycle frames which can also be applied to construct k-ARCS(n)s when . We also update the known results and prove that for k∈{3,4,5,6,7,8,9,10,14} there exists a k-ARCS(2kt+1) for each positive integer t with three known exceptions and four additional possible exceptions.  相似文献   

6.
Let X be the vertex set of KnA k-cycle packing of Kn is a triple (X,C,L), where C is a collection of edge disjoint k-cycles of Kn and L is the collection of edges of Kn not belonging to any of the k-cycles in C. A k-cycle packing (X,C,L) is called resolvable if C can be partitioned into almost parallel classes. A resolvable maximum k-cycle packing of Kn, denoted by k-RMCP(n), is a resolvable k-cycle packing of Kn, (X,C,L), in which the number of almost parallel classes is as large as possible. Let D(n, k) denote the number of almost parallel classes in a k-RMCP(n). D(n, k) for k = 3, 4 has been decided. When nk (mod 2k) and k ≡ 1 (mod 2) or n ≡ 1 (mod 2k) and k ∈{6, 8, 10, 14}∪{m: 5≤m≤49, m ≡ 1 (mod 2)}, D(n, k) also has been decided with few possible exceptions. In this paper, we shall decide D(n, 5) for all values of n≥5.  相似文献   

7.
In this article, necessary and sufficient conditions for the existence of a 1‐rotationally resolvable even‐cycle system of λKv are given, which are eventually for the existence of a resolvable even‐cycle system of λKv. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 394–407, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10058  相似文献   

8.
The necessary and sufficient conditions for the existence of a 1‐rotational k‐cycle system of the complete graph Kv are established. The proof provides an algorithm able to determine, directly and explicitly, an odd k‐cycle system of Kv whenever such a system exists. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 283–293, 2009  相似文献   

9.
A t-(v, k, 1) directed design (or simply a t-(v, k, 1)DD) is a pair (S, ℐ), where S is a v-set and ℐ is a collection of k-tuples (called blocks) of S, such that every t-tuple of S belongs to a unique block. The t-(v, k, 1)DD is called resolvable if ℐ can be partitioned into some parallel classes, so that each parallel class is a partition of S. It is proved that a resolvable 3-(v, 4, 1)DD exists if and only if v = 0 (mod 4).  相似文献   

10.
The purpose of this paper is the initiation of an attack on the general existence problem for almost resolvable 2k‐cycle systems. We give a complete solution for 2k=6 as well as a complete solution modulo one possible exception for 2k=10 and 14. We also show that the existence question for almost resolvable 2k‐cycle systems can be settled if we can show the existence for the two smallest possible orders 4k+1 and 8k+1. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 404–410, 2009  相似文献   

11.
We first define a transitive resolvable idempotent quasigroup (TRIQ), and show that a TRIQ of order v exists if and only if 3∣v and . Then we use TRIQ to present a tripling construction for large sets of resolvable Mendelsohn triple systems s, which improves an earlier version of tripling construction by Kang. As an application we obtain an for any integer n≥1, which provides an infinite family of even orders.  相似文献   

12.
Let SSR(v, 3) denote the set of all integer b* such that there exists a RTS(v, 3) with b* distinct triples. In this paper, we determine the set SSR(v, 3) for v ≡ 3 (mod 6) and v ≥ 3 with only five undecided cases. We establish that SSR(v, 3) = P(v, 3) for v ≡ 3 (mod 6), v ≥ 21 and v ≠ 33, 39 where P(v, 3) = {mv, mv + 4, mv + 6, mv + 7, …, 3mv} and mv, = v(v ? 1)/6. As a by‐product, we remove the last two undecided cases for the intersection numbers of Kirkman triple system of order 27, this improves the known result provided in [ 2 ]. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 275–289, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10037  相似文献   

13.
In an earlier article, Willem H. Haemers has determined the minimum number of parallel classes in a resolvable 2‐(qk,k,1) covering for all k ≥ 2 and q = 2 or 3. Here, we complete the case q = 4, by construction of the desired coverings using the method of simulated annealing. Secondly, we look at equitable resolvable 2‐(qk,k,1) coverings. These are resolvable coverings which have the additional property that every pair of points is covered at most twice. We show that these coverings satisfy k < 2q ? , and we give several examples. In one of these examples, k > q. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 113–123, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10024  相似文献   

14.
It is shown that for any finite group Γ, there exists a 2k‐cycle system whose full automorphism group is isomorphic to Γ. Furthermore, the minimal order of such a system is at most , where .  相似文献   

15.
We investigate Class‐Uniformly Resolvable Designs, which are resolvable designs in which each of the resolution classes has the same number of blocks of each size. We derive the fully general necessary conditions including a number of extremal bounds. We present two general constructions. We primarily consider the case of block sizes 2 and 3, where we find two infinite extremal families and finish two other infinite families by difference constructions. We present tables showing the current state of knowledge in the case of block size 2 and 3 for all orders up to 200. © 2001 John Wiley & Sons, Inc. J Combin Designs 8: 79–99, 2001  相似文献   

16.
Hyperovals in projective planes turn out to have a link with t‐designs. Motivated by an unpublished work of Lonz and Vanstone, we present a construction for t‐designs and s‐resolvable t‐designs from hyperovals in projective planes of order 2 n . We prove that the construction works for t 5 . In particular, for t = 5 the construction yields a family of 5‐ ( 2 n + 2 , 8 , 70 ( 2 n ? 2 ? 1 ) ) designs. For t = 4 numerous infinite families of 4‐designs on 2 n + 2 points with block size 2 k can be constructed for any k 4 . The construction assumes the existence of a 4‐ ( 2 n ? 1 + 1 , k , λ ) design, called the indexing design, including the complete 4‐ ( 2 n ? 1 + 1 , k , ( 2 n ? 1 ? 3 k ? 4 ) ) design. Moreover, we prove that if the indexing design is s‐resolvable, then so is the constructed design. As a result, many of the constructed designs are s‐resolvable for s = 2 , 3 . We include a short discussion on the simplicity or non‐simplicity of the designs from hyperovals.  相似文献   

17.
18.
We give an explicit solution to the existence problem for 1‐rotational k‐cycle systems of order v < 3k with k odd and v ≠ 2k + 1. We also exhibit a 2‐rotational k‐cycle system of order 2k + 1 for any odd k. Thus, for k odd and any admissible v < 3k there exists a 2‐rotational k‐cycle system of order v. This may also be viewed as an alternative proof that the obvious necessary conditions for the existence of odd cycle systems are also sufficient. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 433–441, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10061  相似文献   

19.
We exhibit cyclic (Kv, Ck)‐designs with v > k, vk (mod 2k), for k an odd prime power but not a prime, and for k = 15. Such values were the only ones not to be analyzed yet, under the hypothesis vk (mod 2k). Our construction avails of Rosa sequences and approximates the Hamiltonian case (v = k), which is known to admit no cyclic design with the same values of k. As a particular consequence, we settle the existence question for cyclic (Kv, Ck)‐designs with k a prime power. © 2004 Wiley Periodicals, Inc. J Combin Designs 12: 299–310, 2004.  相似文献   

20.
In this paper, we first introduce a special structure that allows us to construct a large set of resolvable Mendelsohn triple systems of orders 2q + 2, or LRMTS(2q + 2), where q = 6t + 5 is a prime power. Using a computer, we find examples of such structure for t C T = {0, 1, 2, 3, 4, 6, 7, 8, 9, 14, 16, 18, 20, 22, 24}. Furthermore, by a method we introduced in [13], large set of resolvable directed triple systems with the same orders are obtained too. Finally, by the tripling construction and product construction for LRMTS and LRDTS introduced in [2, 20, 21], and by the new results for LR-design in [8], we obtain the existence for LRMTS(v)and LRDTS(v), where v = 12(t + 1) mi≥0(2.7mi+1)mi≥0(2.13ni+1)and t∈T,which provides more infinite family for LRMTS and LRDTS of even orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号