首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
We have prepared and structurally characterized a new member of the butterfly‐like {CoIII2DyIII2} single‐molecule magnets (SMMs) through further CoIII decoration, with the formula [CoIII4DyIII2(OH)2(teaH)2(tea)2(Piv)6] (teaH3=triethanolamine; Piv=trimethylacetate or pivalate). Direct current (DC) susceptibility and magnetization measurements were performed allowing the extraction of possible crystal‐field parameters. A simple electrostatic modeling shows reasonable agreement with experimental data. Alternating current (AC) susceptibility measurements under a zero DC field and under small applied fields were performed at different frequencies (i.e., 10–1500 Hz) and at low temperatures (i.e., 2–10 K). Multiple magnetization relaxation pathways are observed. Comparison with previously reported {CoIII2DyIII2} complex measurements allows an overall discussion about the origin of the dynamic behavior and its relationship with crystal‐field split ground multiplet sublevels.  相似文献   

3.
Ligand L was synthesized and then coordinated to [Ln(hfac)3] ? 2 H2O (LnIII=Tb, Dy, Er; hfac?=1,1,1,5,5,5‐hexafluoroacetylacetonate anion) and [Ln(tta)3]?2 H2O (LnIII=Eu, Gd, Tb, Dy, Er, Yb; tta?=2‐thenoyltrifluoroacetonate) to give two families of dinuclear complexes [Ln2(hfac)6( L )] ? C6H14 and [Ln2(tta)6( L )] ? 2 CH2Cl2. Irradiation of the ligand at 37 040 cm?1 and 29 410 cm?1 leads to tetrathiafulvalene‐centered and 2,6‐di(pyrazol‐1‐yl)‐4‐pyridine‐centered fluorescence, respectively. The ligand acts as an organic chromophore for the sensitization of the infrared ErIII (6535 cm?1) and YbIII (10 200 cm?1) luminescence. The energies of the singlet and triplet states of L are high enough to guarantee an efficient sensitization of the visible EuIII luminescence (17 300–14 100 cm?1). The EuIII luminescence decay can be nicely fitted by a monoexponential function that allows a lifetime estimation of (0.49±0.01) ms. Finally, the magnetic and luminescence properties of [Yb2(hfac)6( L )] ? C6H14 were correlated, which allowed the determination of the crystal field splitting of the 2F7/2 multiplet state with MJ=±1/2 as ground states.  相似文献   

4.
By deliberately using a metastable polyanion [(NbO2)6P2W12O56]12? ( 1 ), which was formed in situ, we have discovered the unprecedented hexameric cluster {Mn15(Nb6P2W12O62)6} ( 2 ), in which the six polyanions [Nb6P2W12O61]10? are alternately connected by four intriguing trinuclear {MnIII3} moieties and four {MnII} linkers. This discovery is the first in which the phosphoniobotungstate has been made accessible by using transition‐metal ions; furthermore, polyanion 2 represents the largest niobotungstate cluster reported to date. Analysis by means of electrospray ionization mass spectrometry (ESI‐MS ) provides insight into the self‐assembly process, and the peaks observed relate to the different charge states of the parent cluster, thus confirming the stability of 2 . In addition, magnetic‐susceptibility measurements reveal that each {MnIII3} subunit is a separate single‐molecule magnet (SMM). This discovery results from the exploration of the reverse effect of metastable polyanion 1 possessing high reactivity, thereby turning a disadvantage into an advantage. This finding could define a new synthetic strategy for the design and synthesis of magnetic polyoxometalate (POM) clusters.  相似文献   

5.
Three cobalt(II)‐containing tungstophosphate compounds, Na8Li8Co5[Co5.5(H2O)19P8W48.5O184] ? 60 H2O ( 1 ), K2Na4Li11Co5[Co7(H2O)28P8W48O184]Cl ? 59 H2O ( 2 ), and K2Na4LiCo11[Co8(H2O)32P8W48O184](CH3COO)4Cl ? 47 H2O ( 3 ), have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis, elemental analyses, and magnetic measurements. The pH value impacts the formation of distinct cobalt‐linked frameworks. The cyclic cavity of the polyanion accommodates 5.5, 7, and 8 cobalt ions in 1 , 2 , and 3 , respectively. In compounds 1 and 2 , each {Co5.5P8W48} and {Co7P8W48} fragment links to four others through multiple {Co‐O‐W} coordination bonds to generate a two‐dimensional network. Compound 3 can be considered as a 3D network based on the {Co‐O‐W} coordination bonds and the {Co3(CH3COO)2(H2O)10} linkers between the {P8W48} fragments. Interestingly, acetate ligands have been employed to form the {Co3(CH3COO)2(H2O)10} unit, thereby inducing the construction of a 12‐connected framework. To the best of our knowledge, compound 3 contains the largest‐ever number of cobalt ions in a {P8W48}‐based polyoxometalate when counterions are taken into account and the {P8W48} unit shows the highest number of connections thanks to the carboxyl bridges. The UV/Vis diffuse reflectance spectra of these powder samples indicate that the corresponding well‐defined optical absorption associated with Eg can be assessed at 2.58, 2.48, and 2.73 eV and reveal the presence of an optical band gap. The photocatalytic H2 evolution activities of these {P8W48}‐based compounds are evaluated.  相似文献   

6.
7.
Four Ln‐NDC coordination polymers [Ln(NDC)(HNDC)(H2O)] (Ln = La ( 1 ), Pr ( 2 ), Nd ( 3 ), Sm ( 4 ), H2NDC = 1,4‐naphthalenedicarboxylic acid) were hydrothermally synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single‐crystal X‐ray diffraction. Compounds 1 – 4 are isomorphous, and their structures display a layer constructed from a Ln‐organic chain and NDC2– ligand, in which the H2NDC ligands adopt two different acidity‐dependent types and coordination modes: HNDC1– with μ‐η11 and NDC2– with μ‐η1212. The 3D supramolecular networks of 1 – 4 are mainly controlled by hydrogen bonds interactions. The magnetic susceptibilities of complexes 2 – 4 reveal overall antiferromagnetic interactions between the LnIII ions. In addition, thermogravimetric analysis of compound 2 is described.  相似文献   

8.
9.
New heteroatom polyoxovanadates (POVs) were synthesized by applying a water‐soluble high‐nuclearity cluster as new synthon. The [V15Sb6O42]6? cluster shell exhibiting D3 symmetry was in situ transformed into completely different cluster shells, namely, the α‐[V14Sb8O42]4? isomer with D2d and the β‐[V14Sb8O42]4? isomer with D2h symmetry. The solvothermal reaction of {Ni(en)3}3[V15Sb6O42(H2O)x] ? 15 H2O (x=0 or 1; en=ethylenediamine) in water led to the crystallization of [{Ni(en)2}2V14Sb8O42] ? 5.5 H2O containing the β‐isomer. The addition of [Ni(phen)3](ClO4)2 ? 0.5 H2O (phen=1,10‐phenanthroline) to the reaction slurry gave the new compound {Ni(phen)3}2[V14Sb8O42] ? phen ? 12 H2O with the α‐isomer. Both transformation reactions are complex due the change of symmetry, the chemical composition, and rearrangement of the VO5 square pyramids and Sb2O5 handle‐like moieties.  相似文献   

10.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

11.
By using environmentally friendly [Ni(CN)4]2? as a cyanide source, three new heterometallic cyano‐bridged mixed‐valence CuI/CuII coordination polymers with three different electronic configurations (d8–d10), that is, [Cu2Ni(CN)5(H2O)3] ( 1 ), [Cu2Ni(CN)5(pn)H2O] ( 2 ), and [Cu3Ni(CN)6(pn)2] ( 3 , pn=1,2‐propane diamine) have been synthesized by gradually increasing the amount of pn. Compound 1 , which was hydrothermally synthesized in the absence of pn ligand, exhibits the famous 2D Cairo pentagonal tiling, in which the CuI, CuII, and NiII atoms act as trigonal, T‐shaped, and square‐planar nodes, respectively. Notably, there are three water molecules located at the meridianal positions of the octahedrally coordinated CuII atom in compound 1 . A similar reaction, except for the addition of a small amount of pn, generated a similar Cairo pentagonal tiling layer in which two of the water molecules that were located at the meridianal positions of the octahedrally coordinated CuII atom were replaced by a chelating pn group. Another similar hydrothermal reaction, with the addition of a larger amount of pn, yielded compound 3 , which showed a related two‐fold‐interpenetrated (3,4)‐connected 3D framework with an unprecedented {83}2{86} topology in which the CuII atom was chelated by two pn groups. These structural changes between compounds 1 , 2 , 3 can be explained by the chelating effect of the pn group. The replacement of two meridianally coordinated water molecules on the octahedral CuII atom in compound 1 by a pn group gives compound 2 , which shows similar Cairo tiling, and a further increase in the amount of pn results in the formation of the [Cu(NC)2(pn)2] unit and the two‐fold‐interpenetrated 3D framework of compound 3 . The mixed‐valence properties of compounds 1 , 2 , and 3 were confirmed by variable‐temperature magnetic‐susceptibility measurements.  相似文献   

12.
The reactions of dilithium salt of trans-1,2-bis(trimethylsilylamino)cyclohexane with anhydrous lanthanide trichlorides LnCl3 (Ln = Yb, Nd) in THF afforded the dianionic binuclear tricycles of lanthanide chlorides {Li(THF)3[LnCl(μ2-trans-1,2-(NSiMe3)2C6H10)(μ2-Cl)]}2·2THF (Ln=Yb 1, Nd 2) in moderate yields. Both of the bridged complexes were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Crystal structural analysis shows that the two complexes are the analogues which have a tricyclic framework built by two bridged lanthanide metals, four nitrogens and four carbons from two diamide ligands. Each lanthanide metal coordinates to three nitrogen atoms and two chlorines to form a distorted trigonal bipyramid and connects with a lithium by a bridging chlorine.  相似文献   

13.
14.
使用H2L配体(H2L=2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) terephthalic acid)和Zn2+通过水热反应,合成了一例基于双核{Zn2(COO)4}次级构筑单元的二维发光配位聚合物[Zn2(L)2(DMSO)2(DMF)](1)(DMSO=二甲亚砜,DMF=N,N-二甲基甲酰胺)。拓扑分析表明1结构中的双核{Zn2(COO)4}单元可视为4连接节点,并与作为连接子的L2-形成(4,4)-网拓扑构型。1表现出对Fe3+离子的选择性发光猝灭响应,检测限为2.8 μmol·L-1。1对Fe3+的检测具有良好的抗干扰性,且可通过DMF溶剂洗涤实现再生,可多次循环使用。  相似文献   

15.
The crystal structure of a copper(II) complex of 2‐acetylpyridine 3‐piperidylthiosemicarbazone, [Cu(Acpip)2], indicates a tridentate, monoanionic ligand (i. e., pyridine nitrogen, imine nitrogen and thiolato sulfur atoms) and a bidentate, monanionic ligand (i. e., imine nitrogen and thiolato sulfur atoms). The stereochemistry approaches square pyramidal with the bidentate ligand occupying an apical (imine nitrogen atom) and basal (thiolato sulfur atom) position. The structure of a nickel(II) complex of 1‐phenylglyoxal N(4)‐diethylthiosemicarbazone, [Ni(Pg4DE)], has a 4‐6‐5 trichelate system rather than the 5‐5‐5 system common to bis(thiosemicarbazones). Coordination of the hydrazinic nitrogen atom of the “phenyl arm” along with the thiolato sulfur atom provides the 4‐membered chelate ring.  相似文献   

16.
The complexes [Ag12(Spz)12(N‐triphos)2][Ag3(Spz)3(N‐triphos)]2 · (DMF)6 ( 1 ) and [Ag18(Spz)12(N‐triphos)4(CF3CO2)6] ( 2 ) were synthesized and structurally characterized by X‐ray diffraction [HSpz = pyrazine‐2‐thiolate, N‐triphos = tris((diphenylphosphanyl)methyl)amine]. The central [Ag6] ring with chair‐conformation in 1 and the ideally octahedral [Ag6] cluster core in 2 are both stabilized by the tripodal building units of neutral [Ag3(Spz)3(N‐triphos)] compound. The Ag ··· Ag distances of the [Ag6] moieties in 1 and 2 are 3.07 and 2.81 Å, respectively, exhibiting intermetallic interactions, which can enhance the stability of [Ag6] conformations. In addition, the π ··· π interactions between parallel pyrazine rings could impose on the building and the Ag ··· Ag interactions of these Ag–S clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号