共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Hu Mei Chen Qian Wang Lanying Zhang Xiaotao Yuan Feiwu Chen Huai Yang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(20):6770-6774
Thiols are prone to react with a multitude of various functional groups in high yields, which has been widely used for surface‐ and particle‐patterning, bioorganic synthesis, polymer modification, imprint nanolithography, the fabrication of optical components, hydrogel synthesis, and the curing of hard protective coatings. In this work, a chiral thiol with a high helical twisting power was synthesized through a novel synthetic route with high selectivity, yield, and cost‐effectiveness. It was then used to fabricate a liquid‐crystal composite film with ultra‐wide broadband reflection via thiol click chemistry. Cholesteric liquid‐crystal materials with broadband reflection have many potential applications for broadband polarizers, polarizer‐free displays, organic optical data storage media, smart switchable reflective windows, and continuous waveband laser protection. 相似文献
2.
Supitchaya Iamsaard Emmanuel Anger Sarah Jane Aßhoff Alexis Depauw Stephen P. Fletcher Nathalie Katsonis 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2016,128(34):10062-10066
Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross‐linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long‐lived photomechanical deformation in liquid‐crystal polymer networks. 相似文献
3.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(45):14390-14394
Achieving complex shape change of liquid‐crystal polymer networks (LCNs) under stimulation generally requires spatial configuration of the orientation direction, that is, patterned directors, of liquid crystal monomers prior to polymerization by means of treated surfaces. A strategy is demonstrated that needs only the simple uniaxial orientation of mesogens (monodomain) induced by mechanical stretching of LCNs. Using a rationally designed liquid crystal polymer, photocrosslinking is utilized to pattern or spatially organize the actuating monodomains in order to generate a differential contractile and/or extensional force field required for targeted shape change. Moreover, the approach enables versatile actuation modes and allows multiple shape changes to be programmed on a single piece of the polymer. This important feature is demonstrated with a specimen cut to have eight strips that, upon thermal stimulation, simultaneously display eight types of shape morphing. 相似文献
4.
Zhi‐Chao Jiang Yao‐Yu Xiao Xia Tong Yue Zhao 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(16):5386-5391
The ability to optically reconfigure an existing actuator of a liquid crystal polymer network (LCN) so that it can display a new actuation behavior or function is highly desired in developing materials for soft robotics applications. Demonstrated here is a powerful approach relying on selective polymer chain decrosslinking in a LCN actuator with uniaxial LC alignment. Using an anthracene‐containing LCN, spatially controlled optical decrosslinking can be realized through photocleavage of anthracene dimers under 254 nm UV light, which alters the distribution of actuation (crosslinked) and non‐actuation (decrosslinked) domains and thus determines the actuation behavior upon order‐disorder phase transitions. Based on this mechanism, a single actuator having a flat shape can be reconfigured in an on‐demand manner to exhibit reversible shape transformation such as self‐folding into origami three‐dimensional structures. Moreover, using a dye‐doped LCN actuator, a light‐fueled microwalker can be optically reconfigured to adopt different locomotion behaviors, changing from moving in the laser scanning direction to moving in the opposite direction. 相似文献
5.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2018,130(36):11932-11937
A strip of a liquid crystal elastomer doped with a near‐infrared dye with one side crosslinked monodomain and the other crosslinked polydomain along the thickness behaves like a multifunctional photoactuator without the need for a support. A flat strip with two ends fixed on substrate surface forms a moving bump under laser scanning, which can be used as light‐fueled conveyor to transport an object. Cutting off and laser scanning the bump with two free ends makes a soft and flexible millimeter‐scale crawler that can not only move straight and climb an inclined surface, but also undergo light‐guided turning to right or left as a result of combined out‐of‐plane and in‐plane actuation. Based on the self‐shadowing mechanism, with one end of the strip fixed on substrate surface, it can execute a variety of autonomous arm‐like movements under constant laser illumination, such as bending–unbending and twisting, depending on the laser incident angles with respect to the strip actuator. 相似文献
6.
7.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(16):4669-4673
In achiral rod‐like molecules, a nematic phase is the most disordered liquid crystal phase, which only has one‐directional order in the direction of the molecular long axis. A dumbbell‐shaped molecule (compound 3 : R−C6H10−CH=CH−C6H4−CH=CH−C6H10−R, (R=n C5H11)), and its liquid crystal phase (X phase) are reported, which exhibit high scattering without thermal fluctuation between two nematic phases under a polarized light optical microscope. The X phase was investigated by X‐ray diffraction, scanning electron microscopy, atomic force microscopy, and molecular dynamics simulation. A layered structure was ascertained for which a molecular self‐organization mechanism was postulated in which the super‐structure is based on lateral intermolecular interlocking. A second nematic phase above the X phase consisted of “rice grain”‐shaped particles. 相似文献
8.
Izabela Kaminska Wang Qi Alexandre Barras Janusz Sobczak Joanna Niedziolka‐Jonsson Patrice Woisel Joel Lyskawa William Laure Marcin Opallo Musen Li Rabah Boukherroub Sabine Szunerits 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(26):8673-8678
The large‐scale preparation of graphene is of great importance due to its potential applications in various fields. We report herein a simple method for the simultaneous exfoliation and reduction of graphene oxide (GO) to reduced GO (rGO) by using alkynyl‐terminated dopamine as the reducing agent. The reaction was performed under mild conditions to yield rGO functionalized with the dopamine derivative. The chemical reactivity of the alkynyl function was demonstrated by post‐functionalization with two thiolated precursors, namely 6‐(ferrocenyl)hexanethiol and 1H,1H,2H,2H‐perfluorodecanethiol. X‐ray photoelectron spectroscopy, UV/Vis spectrophotometry, Raman spectroscopy, conductivity measurements, and cyclic voltammetry were used to characterize the resulting surfaces. 相似文献
9.
10.
11.
Manh Linh Nguyen Jaeduk Byun Suwoong Kim June Won Hyun Kahyun Hur Tae Joo Shin Byoung‐Ki Cho 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(9):2775-2779
The 1,2,3‐triazole molecule, which is a product of click chemistry, possesses a high dipole moment and can be a useful polar motif for ferroelectric columnar liquid crystal (LC) materials—though it has not been used to date. Herein, we report the helical assembly and ferroelectric switching properties of a columnar liquid crystal comprising a naphthalene core and 1,2,3‐triazolyl linkages. The molecule assembles into a double‐stranded helical columnar LC structure (Colhel). The X‐ray simulations of cisoid and transoid columnar models suggest that the helical assembly comprises cisoid conformers with a non‐zero dipole moment. The helical columns in the Colhel phase are aligned homeotropically under an electric field. The ferroelectric switching of the axial polarization can be observed in the temperature range of 105–115 °C in the Colhel phase, wherein the triazolyl hydrogen bonding along the column axis is weakened. The ferroelectric switching event is attributed to the rotation of the polar triazolyl units in response to the electric field. 相似文献
12.
13.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(30):8939-8943
Liquid marbles are emergent microreactors owing to their isolated environment and the flexibility of materials used. Plasmonic liquid marbles (PLMs) are demonstrated as the smallest spectroelectrochemical microliter‐scale reactor for concurrent spectro‐ and electrochemical analyses. The three‐dimensional Ag shell of PLMs are exploited as a bifunctional surface‐enhanced Raman scattering (SERS) platform and working electrode for redox process modulation. The combination of SERS and electrochemistry (EC) capabilities enables in situ molecular read‐out of transient electrochemical species, and elucidate the potential‐dependent and multi‐step reaction dynamics. The 3D configuration of our PLM‐based EC‐SERS system exhibits 2‐fold and 10‐fold superior electrochemical and SERS performance than conventional 2D platforms. The rich molecular‐level electrochemical insights and excellent EC‐SERS capabilities offered by our 3D spectroelectrochemical system are pertinent in charge transfer processes. 相似文献
14.
15.
16.
17.
18.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(8):2194-2197
A new perylene bisimide (PBI) dye self‐assembles through hydrogen bonds and π–π interactions into J‐aggregates that in turn self‐organize into liquid‐crystalline (LC) columnar hexagonal domains. The PBI cores are organized with the transition dipole moments parallel to the columnar axis, which is an unprecedented structural organization in π‐conjugated columnar liquid crystals. Middle and wide‐angle X‐ray analyses reveal a helical structure consisting of three self‐assembled hydrogen‐bonded PBI strands that constitute a single column of the columnar hexagonal phase. This remarkable assembly mode for columnar liquid crystals may afford new anisotropic LC materials for applications in photonics. 相似文献
19.